Supporting Information

Facile and Diverse Microwave-Assisted Synthesis of Secondary Propargylamines in Water Using CuCl/CuCl₂

Tran Thi Thu Trang,^{a,b} Denis S. Ermolat'ev,*a Erik V. Van der Eycken*a

^aLaboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium ^bDepartment of Chemistry, Hanoi National University of Education, Xuan Thuy 136, Hanoi, Vietnam

* Corresponding authors. Fax: +32 16327990 (E. V. Van der Eycken). Email addresses: <u>ermolatev@gmail.com</u> (D. S. Ermolat'ev), <u>erik.vandereycken@chem.kuleuven.be</u> (E. V. Van der Eycken)

Table of contents for supporting information:	Page
General Remarks	2
Microwave Irradiation Experiments	2
General Procedure for the Preparation of Propargylamines	2
Spectroscopic data of Propargylamines	3
¹ H NMR and ¹³ C NMR spectra	10

General Remarks.

¹H and ¹³C NMR spectra were recorded on 300 MHz instrument. The ¹H chemical shifts are reported in ppm relative to tetramethylsilane. High–resolution mass spectra were recorded by using ion source temperature 150–250°C as required. High–resolution EI–mass spectra were performed with a resolution of 10000. For thin layer chromatography, analytical TLC plates SIL G/UV254 and 70–230 mesh silica gel were used. Reagents were used without further purification. Solvents like water, heptane and ethyl acetate were used after distillation.

Microwave Irradiation Experiments.

All microwave irradiation experiments were carried out in a dedicated CEM–Discover monomode microwave apparatus, operating at a frequency of 2.45GHz with continuous irradiation power from 0 to 100 W with utilization of the standard absorbance level of 100 W maximum power. The reactions were carried out in 10 mL glass tubes, sealed with Teflon septum and placed in the microwave cavity. The reaction was irradiated at a required ceiling temperature using maximum power for the stipulated time. Then it was cooled to ambient temperature with gas jet cooling.

General Procedure for the Preparation of Alkylsubstituted Propargylamines.

To a microwave vial equipped with magnetic stir bar was added amine (2.6 or 3.0 mmol), aldehyde (2.0 mmol), acetylene (3.2 mmol), CuCl (0.2 mmol), CuCl₂ (0.2 mmol) and water (3.0 mL). The microwave vial was flushed with argon. The reaction vessel was then sealed and irradiated in a cavity of CEM–Discover microwave reactor at 100 W for 25 min at a ceiling temperature of 110°C. The resulting reaction mixture was extracted with EtOAc (20mL). Organic phase was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was then loaded directly onto a column and flashed on silica gel (10–15% EtOAc in heptane) to afford the product as a yellowish oil. The identity and purity of the products were confirmed by ¹H, ¹³C NMR, and HRMS.

Spectroscopic data of Propargylamines.

N-(2-methoxyethyl)-1-(4-propylphenyl)undec-1-yn-3-amine (4a):

¹H NMR (300 MHz, CDCl₃): δ 7.32 (d, *J* = 7.91 Hz, 2H), 7.09 (d, *J* = 7.91 Hz, 2H), 3.58 (m, 3H), 3.36 (s, 3H), 3.15 (m, 1H), 2.80 (m, 1H), 2.56 (m, 2H), 1.63 (m, 6H), 1.28 (m, 10H), 0.90 (m, 6H). ¹³C NMR (75,5 MHz, CDCl₃) δ 142.6, 131.6, 128.4, 120.7, 90.3, 83.9, 72.2, 58.7, 51.0, 47.0, 37.9, 36.2, 31.9, 29.6, 29.5, 29.3, 26.2, 24.4, 22.7, 14.1, 13.8. HRMS (EI) ([M+H]⁺) Calcd. for C₂₃H₃₇NO: 344.2875, found 344.2884.

1-(4-Fluorophenyl)-N-isobutyl-4-methylpent-1-yn-3-amine (4b):

¹H NMR (300 MHz, CDCl₃): δ 7.43 (m, 2H), 7.24 (m, 2H), 2.58 (brs, 1H), 2.51 (m, 1H), 2.38 (m, 1H), 1.85 (m, 1H), 1.66 (m, 1H), 1.01(m, 6H), 0.88 (m, 6H). ¹³C NMR (75,5 MHz, CDCl₃) δ 162.8 (d, *J* = 250.8 Hz), 133.5, 129.3 (d, *J* = 8.2 Hz), 123.8 (d, *J* = 3.84 Hz), 115.4 (d, *J* = 20.9 Hz), 112.2 (d, *J*=15.9 Hz), 95.9, 95.81, 57.5, 56.0, 32.9, 28.5, 20.8, 20.6, 19.8, 18.0. HRMS (EI) ([M+H]⁺) Calcd. for C₁₆H₂₃FN: 248.1736, found 248.1738.

1-(4-Fluorophenyl)-N-pentyloct-1-yn-3-amine (4c)

¹H NMR (CDCl₃, 300 MHz): δ 7.38 (m, 2H), 7.38 (m, 2H), 6.98 (t, *J* = 7.35 Hz, 2H), 3.57 (m, 1H), 2.88 (m, 1H), 2.67 (m, 1H), 1.69 (m, 2H), 1.57-1.26 (br, 15H), 0.90 (8H). ¹³C NMR (75.5 MHz, CDCl₃): δ 163.9, 160.6, 133.5, 133.4, 119.6, 119.5, 115.6, 115.3, 90.9, 90.8, 82.6, 50.9, 47.6, 36.1, 31.7, 29.7, 29.6, 25.9, 22.6, 22.5, 14.1. HRMS (ESI) ([M]⁺) Calcd. for C₁₉H₂₈FN: 289.2206, found 289.2218.

N-Benzyl-4-methyl-1-phenylpent-1-yn-3-amine (4d)

¹H NMR (300 MHz, CDCl₃): δ 7.46–7.43 (m, 2H), 7.41–7.35 (m, 3H), 7.33–7.29 (m, 5H), 4.10 (d, *J* = 12.99 Hz, 1H), 3.89 (d, *J* = 12.99 Hz, 1H), 3.40 (t, *J* = 5.46 Hz, 1H), 2.00–1.89 (m, 1H), 1.06 (d, *J* = 6.78 Hz, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 140.1, 131.6, 128.4, 128.3, 128.2, 127.8, 126.9, 123.5, 89.6, 84.6, 56.1, 51.7, 32.9, 19.8, 18.0. HRMS (ESI) ([M]⁺) Calcd. for C₁₉H₂₁N: 263.1674, found 263.1677.

N-tert-butyl-5-methyl-1-phenylhex-1-yn-3-amine (4e)

t-Bu NH i-Bu

Ph

¹H NMR (300 MHz, CDCl₃): δ 7.39–7.36 (m, 2H), 7.20–7.27 (m, 3H), 3.63 (q, *J* = 6.78, 8.46 Hz, 1H), 1.97–1.88 (m, 1H), 1.64–1.54 (m, 1H), 1.49–1.44 (m, 1H), 1.20 (s, 9H), 0.95 (dd, *J* = 189, 6.6, 6H). ¹³C NMR (300 MHz, CDCl₃): δ 131.3, 128.1, 127.6, 123.8, 94.4, 82.4, 51.3, 47.8, 42.7, 29.9, 25.1, 22.9, 22.1. HRMS (ESI) ([M] ⁺) Calcd for C₁₇H₂₅N: 243.1987, found 243.1990.

N-(1-(4-hexylphenyl)hex-1-yn-3-yl)heptan-1-amine (4f)

¹H NMR (300 MHz, CDCl₃) δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 3.57 (m, 1H), 2.89 (m, 1H), 2.64 (m, 1H), 2.58 (m, 2H), 1.72-1.43 (m, 8H), 1.28 (br, 14H), 1.13 (brs,1H), 0.96 (m, 3H), 0.88 (m, 6H). ¹³C NMR(75,5 MHz, CDCl₃) δ 142.9, 131.6, 128.3, 120.7, 90.7, 83.7, 50.7, 47.7, 38.5, 35.9, 31.9, 31.7, 31.3, 31.2, 30.2, 29.3, 28.9, 27.5, 22.7, 19.5, 14.1, 14.0. HRMS (EI) ([M+H] ⁺) Calcd for C₂₅H₄₂N: 356.3239, found 356.3245.

1-(4-Butylphenyl)-5-methyl-N-phenethylhex-1-yn-3-amine (4g):

Phenethyl ____NH 4-BuPh *i-*Bu

¹H NMR (CDCl₃, 300 MHz): δ 7.33-7.05 (m, 9H), 3.61 (m, 1H), 3.26-3.16 (m, 1H), 3.01-2.76 (m, 3H), 2.58 (t, *J* = 7.7 Hz, 2H), 1.72-1.25 (m, 11H), 0.91 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 142.9, 140.0, 131.5, 128.8, 128.5, 128.3, 126.2, 120.5, 90.2, 83.9, 50.8, 48.6, 36.3, 35.8, 35.5, 33.4, 28.4, 22.5, 22.3, 14.0, 13.9. HRMS (ESI) ([M] ⁺) Calcd for C₂₅H₃₃N: 347.2613, found 347.2615.

N-benzyl-2-methyldec-5-yn-4-amine (4h):

¹H NMR (300 MHz, CDCl₃) δ 7.37-7.21 (m, 5H), 4.02 (d, *J* = 12.81 Hz, 2H), 3.79 (d, *J* = 12.81 Hz, 2H), 3.39 (m, 1H), 2.23 (m, 2H), 1.89 (m, 1H), 1.57-1.26 (m, 8H), 0.9 (m, 9H). ¹³C NMR (75,5 MHz, CDCl₃) δ 140.5, 128.4, 128.3, 126.9, 83.8, 81.7, 51.4, 48.1, 45.7, 31.2, 25.3, 23.0, 22.2, 22.0, 18.5, 13.7. HRMS (EI) ([M+H] ⁺) Calcd for C₁₈H₂₈N: 258.2143, found 258.2139.

N-benzyl-2-methylundec-5-yn-4-amine (4i):

¹H NMR (300 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 4.02 (d, *J* =12.81 Hz, 1H), 3.80 (d, *J* =12.81 Hz, 1H), 3.39 (m, 1H), 2.22 (m, 2H), 1.89 (m, 1H), 1.56-1.30 (m, 8H), 0.91 (m, 9H). ¹³C NMR (75,5 MHz, CDCl₃) δ 140.5, 128.4, 128.3, 126.9, 83.9, 81.7, 51.4, 48.1, 45.7, 31.1, 28.8, 25.2, 23.0, 18.7, 14.1. HRMS (EI) ([M+H] ⁺) Calcd for C₁₉H₃₀N: 272.2300, found 272.2302.

N-(4-methoxybenzyl)-4-methyl-1-phenylpent-1-yn-3-amine (4j):

¹H NMR (CDCl₃, 300 MHz): δ 7.45 (m, 2H), 7.30 (m, 4H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.04 (d, *J* = 12.8 Hz, 1H), 3.86-3.77 (m, 4H), 3.39 (d, *J* = 5.53 Hz, 1H), 1.93 (m, 1H), 1.72 (br, 1H), 1.06 (d, *J* = 6.87 Hz, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 158.7, 132.3, 131.7, 129.6, 128.2, 127.8,

123.6, 113.8, 89.8, 84.7, 56.0, 55.2, 51.1, 32.9, 19.8, 18.0. HRMS (ESI) ([M] ⁺) Calcd for $C_{20}H_{23}NO: 293.1780$, found 293.1780.

4-Methyl-*N*-phenethyl-1-phenylpent-1-yn-3-amine (4k):

¹H NMR (CDCl₃, 300 MHz): δ 7.40-7.19 (m, 10H), 3.44 (d, *J* = 5.3 Hz, 1H), 3.24-3.16 (m, 1H), 2.97-2.76 (m, 3H), 1.91 (m, 1H), 1.50 (br, 1H), 1.20 (m, 6H). ¹³C NMR (75.5 MHz, CDCl₃): δ 140.1, 131.7, 128.7, 128.4, 128.2, 126.1, 123.5, 89.6, 84.5, 57.1, 49.2, 36.4, 32.9, 19.9, 17.8. HRMS (ESI) ([M] ⁺) Calcd for C₂₀H₂₃N: 277.1830, found 277.1827.

1-Cyclohexyl-*N*-(3-methoxyphenethyl)-3-(4-methoxyphenyl)prop-2-yn-1-amine (4l): p-MeOPhenetyl

¹H NMR (CDCl₃, 300 MHz): δ 7.33 (d, *J* = 8.6 Hz, 2H), 7.20 (m, 1H), 6.94-6.73 (m, 5H), 3.85 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.41 (d, *J* = 5.6 Hz, 1H), 3.24-3.15 (m, 1H), 2.96-2.72 (m, 3H), 1.85-1.54 (m, 7H), 1.28-1.11 (m, 5H). ¹³C NMR (75.5 MHz, CDCl₃): δ 159.7, 159.2, 141.8, 133.0, 130.6, 129.4, 121.1, 115.7, 114.4, 113.8, 113.7, 111.5, 88.5, 84.3, 56.4, 55.3, 55.1, 49.0, 42.7, 36.4, 30.3, 28.6, 26.5, 26.3, 26.1. HRMS (ESI) ([M] ⁺) Calcd for C₂₅H₃₁NO₂: 377.2355, found 377.2361.

N-(1-(4-methoxyphenyl)-5-phenylpent-1-yn-3-yl)cyclobutanamine (4m):

¹H NMR (CDCl₃, 300 MHz): δ 7.36 (d, *J* = 8.6 Hz, 2H), 7.30-7.11 (m, 5H), 6.8 (d, *J* = 8.6 Hz, 2H), 3.80 (s, 3H), 3.58-3.48 (m, 1H), 2.97-2.68 (m, 3H), 2.44-2.16 (m, 2H), 2.04-1.60 (m, 5H). ¹³C NMR (75.5 MHz, CDCl₃): δ 159.4, 141.7, 132.9, 128.5, 128.4, 125.9, 115.4, 113.9, 89.4, 83.7, 55.3, 52.7, 48.4, 37.8, 32.4, 32.1, 31.2, 15.3. HRMS (ESI) ([M] ⁺) Calcd for C₂₂H₂₅NO: 319.1936, found 319.1939.

N-(1-cyclohexyl-3-phenylprop-2-ynyl)cyclohexanamine (4n):

¹H NMR (CDCl₃, 300 MHz): δ 7.42 (m, 2H), 7.29 (m, 3H), 3.52 (d, *J* = 5.4 Hz, 1H), 2.84-2.75 (m, 1H), 2.0-1.54 (m, 11H), 1.40-0.95 (m, 11H). ¹³C NMR (75.5 MHz, CDCl₃): δ 131.7, 128.2, 127.7, 123.8, 90.8, 84.0, 54.4, 52.9, 43.0, 34.5, 32.5, 30.5, 28.3, 26.6, 26.3, 26.2, 26.1, 25.2, 24.8. HRMS (ESI) ([M] ⁺) Calcd for C₂₁H₂₉N: 295.2300, found 295.2301.

N-(1-cyclohexyl-3-phenylprop-2-ynyl)cyclooctanamine (40):

c-Octyl_NH c-Hexyl____Ph

¹H NMR (CDCl₃, 300 MHz): δ 7.40 (m, 2H), 7.28 (m, 3H), 3.46 (d, J = 5.4 Hz, 1H), 3.1 (m, 1H), 1.87-0.85 (m, 34H). ¹³C NMR (75.5 MHz, CDCl₃): δ 131, 128.2, 127.7, 123.8, 90.8, 84.0, 55.3, 53.5, 43.0, 34.5, 30.8, 30.5, 28.6, 27.6, 27.2, 26.6, 26.3, 26.1, 25.8, 24.3, 23.9. HRMS (ESI) ([M] ⁺) Calcd for C₂₃H₃₃N: 323.2613, found 323.2616.

N-(1-cyclohexyl-3-(2-fluorophenyl)prop-2-ynyl)cyclohexanamine (4p)

¹H NMR (300 MHz, CDCl₃) δ 7.41 (m, 1H), 7.23 (m, 1H), 7.07 (m, 2H), 3.56 (d, *J* =4.89 Hz, 1H), 2.82 (m, 1H), 1.99-1.68 (m, 12H), 1.36-1.15 (m, 9H), 1.04 (m, 1H). ¹³C NMR (75,5 MHz, CDCl₃) δ 162.9 (d, *J* =250.8 Hz), 133.5, 129.4 (d, *J* =7.7 Hz),123.8, 115.4 (d, *J* =20.9 Hz), 112.1 (d, *J* =15.9 Hz), 95.8, 95.7, 54.6, 53.1, 42.6, 34.2, 32.2, 30.5, 29.2, 28.1, 26.5, 26.3, 25.6, 25.2, 24.8. HRMS (EI) ([M+H] ⁺) Calcd for C₂₁H₂₉FN: 314.2206, found 314.2209.

N-(1-*p*-tolyloct-2-ynyl)cyclopentanamine (4q):

NH 4-MePh Pentyl

¹H NMR (CDCl₃, 300 MHz): δ 7.41 (d, *J* = 7.9Hz, 2H), 7.14 (d, *J* = 7.7Hz, 2H), 4.60 (br, 1H), 3.32 (m, 1H), 2.44 (br, 1H), 2.32 (s, 3H), 2.30 (t, *J* = 6.3 Hz, 2H), 1.87-1.23 (m, 15H), 0.89 (t, *J* = 6.5Hz, 3H). ¹³C NMR (75.5 MHz, CDCl₃): δ 129.9, 129.8, 129.1, 127.7, 85.9, 79.6, 57.1, 52.7, 32.9, 32.4, 31.1, 28.5, 24.1, 22.2, 21.1, 18.9, 14.0. HRMS (ESI) ([M] ⁺) Calcd for C₂₀H₂₉N: 283.2300, found 283.2309.

N-(1-cyclohexyl-3-(4-pentylphenyl)prop-2-ynyl)cyclopentanamine (4r):

¹H NMR (300 MHz, CDCl₃) δ 7.37 (m, 2H), 7.11 (m, 2H), 3.43 (m, 1H), 3.38 (d, *J* =5.3 Hz, 1H), 1.92-1.52 (m, 13H), 1.40-1.19 (m, 12H), 0.88 (m, 3H). ¹³C NMR (75,5 MHz, CDCl₃) δ 142.8, 132.1, 131.6, 128.3, 120.9, 90.1, 84.1, 57.6, 55.0, 43.1, 35.8, 34.0, 32.6, 31.4, 31.0, 30.9, 30.5, 28.5, 26.6, 26.4, 26.2, 24.2, 22.6, 14.1. HRMS (EI) ([M+H] ⁺) Calcd for C₂₅H₃₈N: 352.2926, found 352.2922.

N–(5–methyl–1–phenylhex–1–yn–3–yl)cyclododecanamine (4s):

¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 3.51, 2H), 7.38–7.26 (m, 3H), 3.69 (t, J = 6.78 Hz, 1H), 3.09 (bs, 1H), 2.01–1.92(m, 1H), 1.71–1.64 (m, 1H), 1.58–1.52 (m, 2H), 1.43–1.30(m, 24H), 0.95 (q, J = 3.39, 6.78 Hz, 6H). ¹³C NMR (300 MHz, CDCl3): δ 131.5, 128.1, 127.7, 123.6, 92.0, 83.2, 51.6, 46.5, 45.8, 30.2, 29.2, 25.3, 24.6, 24.6, 24.1, 23.9, 23.8, 23.1, 22.7, 22.4, 22.1, 21.6, 20.5. HRMS (ESI) ([M] ⁺) Calcd for C₂₅H₃₉N: 353.3083, found 353.3099.

N–(5–methyl–1–phenylhex–1–yn–3–yl)cycloheptanamine (4t):

¹H NMR (300 MHz, CDCl₃) δ 7.42–7.39 (m, 2H), 7.30–7.27 (m, 3H), 3.67 (t, *J* = 6.99 Hz, 1H), 3.09–3.06 (m, 1H), 2.01–1.94(m, 1H), 1.89–1.79 (m, 3H), 1.54–1.36 (m, 12H), 0.95 (q, *J* = 3.57, 6.6, 6H). ¹³C NMR (300 MHz, CDCl3): δ 131.6, 128.2, 127.7, 123.6, 91.7, 83.2, 56.3, 46.3, 45.9, 36.6, 33.2, 28.4, 28.1, 25.3, 24.6, 24.1, 23.1, 22.1. HRMS (ESI) ([M] ⁺) Calcd for C₂₁H₃₁N: 283.2300, found 283.2303.

N-(1-Phenyloct-1-yn-3-yl)cyclooctanamine (4u):

¹H NMR (300 MHz, CDCl₃) δ 7.30 (m, 2H), 7.28 (m, 3H), 3.64 (m, 1H), 3.12 (m, 1H), 1.83-1.21 (m, 22H), 0.90 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 131.7, 128.2, 127.8, 123.7, 91.7, 83.4, 55.1, 48.0, 36.6, 34.5, 31.7, 30.9, 27.6, 27.2, 26.0, 25.9, 24.3, 24.0, 22.6, 14.1. HRMS (ESI) ([M] ⁺) C₂₂H₃₃N, calcd 311.2613, found: 311.2622.

¹³C NMR of *N*-(2-methoxyethyl)-1-(4-propylphenyl)undec-1-yn-3-amine (4a):

¹³C NMR of 1-(4-Fluorophenyl)-*N*-isobutyl-4-methylpent-1-yn-3-amine (4b):

¹H and ¹³C NMR of *N*-Benzyl-4-methyl-1-phenylpent-1-yn-3-amine (4d)

¹H and ¹³C NMR of *N*-tert-butyl-5-methyl-1-phenylhex-1-yn-3-amine (4e)

¹H and ¹³C NMR of 1-(4-Butylphenyl)-5-methyl-N-phenethylhex-1-yn-3-amine (4g)

transmitter freq.: 75.475295 MHz time domain size: 65536 points

width: 17985.61 Hz = 238.2980 ppm = 0.274439 Hz/pt number of scans: 2048

processed size: 65536 complex points LB: 1.000 GF: 0.0000

¹H NMR of *N*-(1-(4-hexylphenyl)hex-1-yn-3-yl)heptan-1-amine (4f)

¹³C NMR of *N*-(1-(4-hexylphenyl)hex-1-yn-3-yl)heptan-1-amine (4g)

¹³C NMR of *N*-benzyl-2-methyldec-5-yn-4-amine (4h):

¹H NMR of *N*-benzyl-2-methylundec-5-yn-4-amine (4i)

¹³C NMR of *N*-benzyl-2-methylundec-5-yn-4-amine (4i)

¹H NMR and ¹³C of *N*-(4-methoxybenzyl)-4-methyl-1-phenylpent-1-yn-3-amine (4j):

file:BMISTRV/Final/NMR\DE:1452CH\11\fid expt: <zgpg30> transmitter freq.: 75.475295 MHz time domain size: 65536 points width: 17985.61 Hz = 238.2980 ppm = 0.274439 Hz/pt

number of scans: 3072

¹H NMR and ¹³C of 1-Cyclohexyl-N-(3-methoxyphenethyl)-3-(4-methoxyphenyl)prop-2-yn-1-amine (4l)

file:BMISTRY\Final\NMR\DE-1432CH\11\fid expt: <zgpg30> transmitter freq.: 75.47 5295 MHz time domain size: 65536 points width: 17985.61 Hz = 238.2980 ppm = 0.274439 Hz/pt

number of scans: 2048

freq. of 0 ppm: 75.467751 MHz processed size: 65536 complex points LB: 1.000 GF: 0.0000

¹H NMR and ¹³C of *N*-(1-(4-methoxyphenyl)-5-phenylpent-1-yn-3-yl)cyclobutanamine (4m)

file:BVIISTRY\Final\NVR\DE 1453CH\11\fid expt: <zgpg30> transmitter freq.: 75,475295 MHz time domain size: 65536 points width: 17985.61 Hz = 238.2980 ppm = 0.274439 Hz/pt

number of scans: 3072

freq. of 0 ppm: 75.467751 MHz processed size: 65536 complex points LB: 1.000 GF: 0.000C

¹H NMR and ¹³C of *N*-(1-cyclohexyl-3-phenylprop-2-ynyl)cyclohexanamine (4n)

width: 17985.61 Hz = 238.2980 ppm = 0.274439 Hz/pt number of scans: 2048

freq. of 0 ppm: 75.467750 MHz processed size: 65536 complex points LB: 1.000 GF: 0.0000

¹H NMR and ¹³C of *N*-(1-cyclohexyl-3-phenylprop-2-ynyl)cyclooctanamine (40)

(*co.of 0 ==**: 75.447750 = 45 =*actaacd aute: 65556 cometox =a:*us u5: 1.000 GF: 0.0000

¹H NMR of *N*-(1-cyclohexyl-3-(2-fluorophenyl)prop-2-ynyl)cyclohexanamine (4p)

¹³C NMR of *N*-(1-cyclohexyl-3-(2-fluorophenyl)prop-2-ynyl)cyclohexanamine (4p)

¹H NMR and ¹³C of *N*-(1-*p*-tolyloct-2-ynyl)cyclopentanamine (4q)

¹³C NMR of *N*-(1-cyclohexyl-3-(4-pentylphenyl)prop-2-ynyl)cyclopentanamine (4r)

¹H NMR and ¹³C of *N*-(5-methyl-1-phenylhex-1-yn-3-yl)cyclododecanamine (4s)

¹H NMR and ¹³C of *N*-(5-methyl-1-phenylhex-1-yn-3-yl)cycloheptanamine (4t)

¹H NMR and ¹³C of *N*-(1-Phenyloct-1-yn-3-yl)cyclooctanamine (4u)

