Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Discovery of new targets of phenolic acids in Danshen using label-free cell phenotypic assay

Jixia Wang a, Tao Hou b, Lai Wei a, Liying Shi b, Jian He a, Nan Zhou d, Guangwei Sun a, Xiuli Zhang *a,c

and Xinmiao Liang a

^a Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese

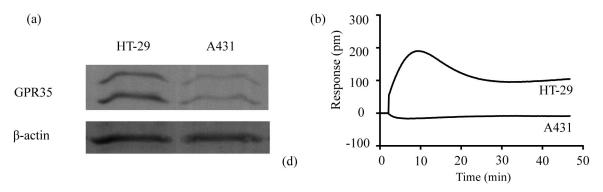
Academy of Sciences, Dalian, China

^b Institute of Materia Medica, Dalian University, Dalian, China

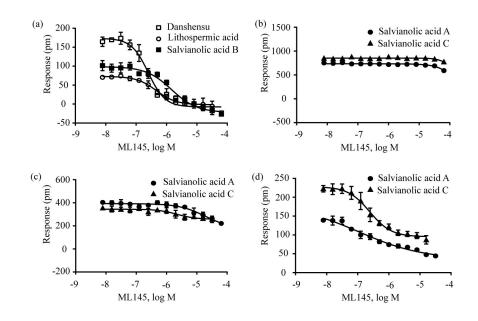
^c Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China

^d Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China

*Corresponding authors: Xiuli Zhang


Tel.: +86 411 84379519; fax: +86 411 84379539.

E-mail addresses: <u>zhangxiuli@dicp.ac.cn</u>


SUMMARY

This supporting information file includes additional information and results as described in the article.

Fig. S1 The expression level of GPR35 in HT-29 and A431 cells. (a) Western blot assay of GPR35 protein in HT-29 and A431 cells. (b) DMR response of the known agonist zaprinast (10 μ M) in HT-29 and A431 cells.

Fig. S2 The DMR amplitudes of compounds as a function of ML145 doses in HT-29 cells after pre-treated with ML145 for 10 min. (a) Lithospermic acid, salvianolic acid B and danshensu at their EC₈₀ of 125 μM, 100 μM and 100 μM, respectively; (b) salvianolic acid A and salvianolic acid C at their EC₈₀ of 125 μM and 100 μM, respectively; (c) salvianolic acid A and salvianolic acid C at their EC₅₀ of 35 μM and 20 μM, respectively; (d) salvianolic acid A and salvianolic acid C at their EC₂₀ of 15 μM and 4 μM, respectively. All data represents mean \pm s.d. from 2 independent measurements, each in duplicate (n = 4).

