Supporting Information

One-pot synthesis affords perfectly six-fold symmetric Au microsnowflakes for excellent electrochemical biosensing and surfaceenhanced raman scattering assay

Yan Zhang^a, Yonghai Yue^a, Yi peng^a, ChengCheng Huang^a, Lidong Li^a*,Lin Guo^a* and

Shihe Yang^{a,b}*

^a School of Chemistry and Environment, Beihang University, Beijing 100191,

PR China.

^bDepartment of Chemistry, The Hongkong University of Science and Technology,

Clear Water Bay, Kowloon, HongKong, China.

Figure S1 SEM of the prepared Au products without NaBr.

Figure S2 SEM of the prepared Au products by different additions, instead of NaBr:(a) NaCl, (b) KBr.

Figure S3 SEM of the prepared Au products by different surfactants, instead of CTAC: (a) OTAC, (b) CTAB, (c) SDBS, (d) PVP.

Figure S4. The SEM of the final Au structures by using CTAB.

Figure S5. The SEM of the Au microstructures by using different concentrations of CTAC (a) CTAC (0.008M), (b) CTAC (0.009M), (c) CTAC (0.01M), (d) CTAC (0.015M), (e) CTAC (0.02M), (f) CTAC (0.025M) (the NaBr concentration was controlled at 3M)

Figure S6. The SEM of the Au microstructures by using different concentration of NaBr (a) 4.0M, (b) 3.0M, (c) 2.5M, (d) 2.0M (the concentration of CTAC was controlled at 0.01 M)

Figure S7. SEM image of microprisms with \sim 35nm thickness: (a) Low magnification SEM of microprisms, (b) High magnification SEM of microprisms.

Some of literature were added in the supporting information as below:

Ref.	substrate	method	Limitation of
			detection
21	gold nanoparticles	an aptamer is engineered to	$2.5 \times 10^{5} \mathrm{nM}$
		consist of two pieces of random-	
		coil like ssDNA, which are	
		attached to AuNPs through 5'-	
		thiol-modified.	
22	gold nanoparticles	The electrode was modified with	0.18 nM
		gold nanoparticles (AuNPs),	
		thiolated capture probe was	
		immobilized onto the Electrode	
		via sulfur-gold affinity. A	
		"sandwich-type" strategy was	
		employed.	
23	protein-encapsulated	the AuNCs@ew-Cu ²⁺ was used	$1.9 imes10^4$ nM
	gold nanoclusters	conjugates as switch-on sensing	
		probes for the detection of	
		phosphate containing metabolites	
		such as adenosine-5'-triphosphate	
		(ATP).	
24	Au–Ag core–shell	The substrates with Au-Ag core-	0.1 nM
	nanoparticles	shell NPs can also be used to	
		detect adenosine by a structure-	
		switch aptamer.	