Supplementary Information

Fabrication and characterization of β -PbO₂/ α -PbO₂/Sb-SnO₂/TiO₂ nanotube arrays electrode and its application in electrochemical degradation of Acid Red G

Jia Wu^a, †Hao Xu^{a*}, †Wei Yan ^{a, b**}

^aDepartment of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^bState Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Corresponding authors:

E-mail: xuhao@mail.xjtu.edu.cn; yanwei@mail.xjtu.edu.cn

Tel.: +86-13032912105; fax: +86-29-82664731.

Fig. 1S. FE-SEM (a) the bottom view of plain TiO₂ NTAs; (b) the bottom view of Sb-SnO₂/TiO₂ NTAs; (c) the top

view of α -PbO₂/Sb-SnO₂/TiO₂ NTAs; (d) the top view of β -PbO₂/ α -PbO₂/Sb-SnO₂/TiO₂ NTAs.

Fig. 2S. Cyclic voltammograms (CV) curve for the β -PbO₂/ α -PbO₂/Sb-SnO₂/TiO₂ NTAs electrode with different scan rates in 0.5 M H₂SO₄ solution.

Fig. 3S. EIS measurement results and the simulated circuit.

Table. 1S. Simulated data of each parameter.

	R _s /ohm·cm ⁻²	$C_{dl}/F \cdot cm^{-2}$	R_{ct} /ohm·cm ⁻²	$Z_w/S \cdot sec^{-5} \cdot cm^{-2}$
Before OEP	1.5	0.024	56.0	0.16
After OEP	1.5	0.021	20.1	0.33

Fig. 4S. EDS measurement results of the deactivated electrode

	R _s /ohm·cm ⁻²	$C_{dl}/F \cdot cm^{-2}$	R_{ct} /ohm·cm ⁻²	$Z_w/S \cdot sec^{.5} \cdot cm^{-2}$
Normal electrode	1.5	0.021	20.1	0.33
Deactivated electrode	3.1	4.795E-5	122.5	0.02

Table. 2S. Simulated data of the normal electrode and the deactivated electrode