Uniform Anatase Single-Crystal Cubes with Highly Thermal Stability and Fully Enclosed by Active {010} and {001} Facets

Meicheng Wen,^{a, b,†} Peijue Liu, ^{a,†} Shuning Xiao,^a Kohsuke Mori, ^{b,c} Yasutaka Kuwahara, ^{b,c} Hiromi Yamashita, ^{b,c,*} Hexing Li^a and Dieqing Zhang ^{a,*}

a The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.

b Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1

Yamadaoka, Suita, Osaka 565-0871, Japan.

c Unit of Elements Strategy Initiative for Catalysts & Batteries Kyoto University, ESICB, Kyoto University, Japan.

*Corresponding author: dqzhang@shnu.edu.cn; (FAX) 86-21-6432-2272; Yamashita@mat.eng.osaka-u.ac.jp;

(FAX) 06-6879-7457

Figure S1. F_{1s} XPS spectra of samples before and after calcination.

Figure S2. FE-SEM images of anatase TiO₂ crystals obtained in the absence of surfactant (a), in the presence of SDS (b), and CTAB (c), respectively.

Figure S3. Distances between Ti atoms on the {010} surfaces of anatase.

Figure S4. Schematic representation of the SDBS absorbed on $\{010\}$ facets of anatase TiO₂ through π - π stacking between aromatic rings.

Figure S5. (a) XRD pattern and (b) FESEM images of samples D001-F prepared by a method previously published by our group.^[1]

Figure S6. Partial density of states (PDOS) of $\{010\}$ and $\{001\}$ surface of anatase TiO₂.

Figure S7. The photoluminescence spectroscopy spectra of the sample C010 and D001

Figure S8. The recyclability of the photocatalytic oxidation of NO over C010

Figure S9. Wide-angle XRD patterns of the TiO₂ single-crystal cubes calcined at different temperatures under air atmosphere for 1h.

References:

1 D. Zhang, G. Li, H. Wang, K. M. Chan and J. C. Yu, Crys. Growth Des. 2010, 10, 1130-1137.