Supplementary Information

Polydopamine-Assisted Deposition of Heparin for Selective Adsorption of Low-Density Lipoprotein

Yang Liu,† Wen-Ze Qiu,† Hao-Cheng Yang,† Yue-Cheng Qian,† Xiao-Jun Huang,†,* Zhi-Kang Xu†

† MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

^{*}Corresponding author, e-mail: hxjzxh@zju.edu.cn

Fig. S1 Dynamic light scattering results of size distributions of commercial LDL used in this work.

Table S1 Size distribution of LDL obtained from Fig. S1

Size(d.nm)	<13	13~18	18~25	25~80	>80
Number(%)	0	11.5	74.4	14.1	0

Fig. S2 AFM images (5 \times 5 μ m²) of PDA/heparin coatings in air: (A) PDA-Hep(0), (B) PDA-Hep(2), (C) PDA-Hep(5), (D) PDA-Hep(10).

Fig. \$3 Typical SPR adsorption sensorgrams of PDA-Hep(2).

Fig. S4 QCM dissipation when HDL (left) or HSA (right) was used as competitive protein.