Supplementary Information

Terminal Alkyne Substituted O⁶-Benzylguanine for Versatile and Effective Syntheses of Fluorescent Labels to Genetically Encoded

SNAP Tags

Xinbo Song, ^{†,a} Chao Wang, ^{†,a} Zhuo Han,^b Yongping Xu^{*,b} and Yi Xiao^{*,a} State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Road, Dalian 116024, China.

[†] These two authors contribute equally

* Conresponding authors: <u>xyp_dlut@126.com</u>; <u>xiaoyi@dlut.edu.cn</u>

All chemicals are obtained from commercial suppliers and used without further purification. The 400 (¹H) MHz NMR and 100 (¹³C) MHz NMR spectra are registered at room temperature on a 400 MHz spectrometer using perdeuterated solvents as internal standard. Images are acquired with a confocal microscopy from OLYMPUS.

4-[2-Propynylmethoxy]benzyl alcohol .

It is synthesized according to the literature procedures. ¹ 1,4-benzenedimethanol (3 g, 21.71 mmol) is dissolved in 10 mL dry DMF, and NaH (1g) is added in small portions over 10min at 0°C. The mixture is sttired for 15min. Propargyl bromide (2.32 g 19.54 mmol) is added and the mixture is sttired for 1h at 25°C. The mixture is quenched with water, extracted with CH_2Cl_2 , and purified by flash column chromatography with CH_2Cl_2 to get 4-[Prop-2-ynyloxymethy]-benzyl alcohol (2.68g, 15.21mmol, 70%).

1-(2-Amino-7H-purin-6-yl)-1-methyl-pyrrolidinium chloride

It is synthesized according to the literature procedures.² 6-Chloro-guanine (0.5g, 5.9 mmol)) is dissolved in 15 ml DMF at 50°C. After cooling to room temperature, 1-methyl-pyrrolidin (1.4 ml, 13.2 mmol) is added and the reaction mixture is stirred for 24 h. 2 ml of acetone are added to complete precipitation. The solid is filtered, washed with ether and dried in vacuo, yielding 0.55 g product (2.16 mmol, 71%).

O⁶-[4-[2-propynylmethoxy]benzyl]guanine (PYBG).

4-[2-Propynylmethoxy]benzyl alcohol (662 mg, 7.33 mmol) is dissovled in 3 mL dry DMF, and NaH (65mg) is added in small portions over 3 min at 0°C. The mixture is sttired for 15 min. 1-(2-Amino-7H-purin-6-yl)-1-methyl-pyrrolidinium chloride (300 mg) and 4-dimethylaminopyridine (30 mg) are added and the mixture is sttired for 1h at 25°C. The mixture is quenched with 0.5 mL water and purified by flash column chromatography (gradient:CH₂Cl₂/CH₃OH 40:1 \rightarrow 15:1)to yield 255 mg **PYBG** (0.83 mmol, 72%). mp 111.1-112.9°C.¹H NMR (400 MHz, DMSO) δ 11.60 (s, 1H), 6.99 (s, 1H), 6.64 (d, *J* = 7.8 Hz, 2H), 6.50 (d, *J* = 7.8 Hz, 2H), 5.45 (s, 2H), 4.63 (s, 2H), 3.68 (s, 2H), 3.33 (s, 2H), 2.65 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 159.6, 137.4, 136.2, 128.4, 127.8, 80.1, 77.5, 70.4, 66.4, 56.9. m/z (FTMS+p ESI): Calcd [M+H]⁺ for C₁₆H₁₆N₅O₂: 310.1299, found : 310.1295.

PYBG-TMR.

6-Br-tetramethylrhodamine(6-Br-TMR) is synthesized according to literature procedures.³

A mixture of 6-Br-TMR(20 mg, 0.064 mmol), PPh₃ (5 mg, 0.02 mmol), PYBG (20 mg, 0.064mmol), Pd[P[C₆H₅]₃]₄(2 mg, 0.002mmol), CuI (1mg, 0.005mmol), and DMF/Triethylamine (1.5 mL/0.5 mL) are placed in a 10 mL roundbottomed flask with a magnetic stirrer bar under a nitrogen atmosphere . The mixture is heated at 75 °C for 4 h. Then the mixture is purified by column chromatography(gradient:CH₂Cl₂/CH₃OH 40:1 \rightarrow 8:1) to yield 35mg **PYBG-TMR** (0.05mmol, 78%). mp More than 300°C. m/z (TOF-LD+): Calcd [M+H]⁺ for C₄₀H₃₆N₇O₅: 694.2778, found : 694.2833. The resolutions of ¹H NMR and ¹³C NMR spectra are not very satifactory due to the extremely poor solubility of **PYBG-TMR** in CDCl₃, CD₃OD, and DMSO-*d6* etc. The purity is measured by HPLC is 94.4%.

PYBG-BODIPY 4,4-difluoro-8-[4-[[3-azidopropyloxy]phenyl]]-1,3,5,7-teramethyl-4-bora-3a,4a-diazaindacene is synthesized according to literature procedures.⁴

A mixture of **BODIPY**(20mg, 0.05mmol), **PYBG**(15mg, 0.05mmol) and N,N-Diisopropylethylamine(0.05ml, 0.28mmol) are dissovled in 3mL DMF under a nitrongen atmosphere. CuSO₄·5H₂O(2mg, 0.008mmol) dissovled in 0.5mL water is added and then sodium ascorbate dissolved in 0.5mL water is added. The mixture is sttired for 7h at 25°C. Then the mixture is purified by column chromatography (gradient:CH₂Cl₂/CH₃OH 40:1 \rightarrow 15:1) to yield 29mg **PYBG-BODIPY** (0.04mmol, 85%). mp 50.5-57.1°C. m/z (FTMS+p ESI): Calcd [M+H]⁺ for C₃₈H₄₀N₁₀F₂O₃B: 733.3340, found : 733.3342. The resolutions of ¹H NMR and ¹³C NMR spectra were not very satifactory due to the extremely poor solubility of PYBG-BODIPY in CDCl₃, CD₃OD, and DMSO-*d6* etc. The purity is measured by HPLC is 99.1%.

Plasmid Construction

 $pSNAP_{f}$ vector and $pSNAP_{f}$ -H2B plasmid are obtained from New England Biolabs (NEB). $pSNAP_{f}$ -COX8A plasmid is constructed by insertion of mitochondrial targets sequence of cytochrome c oxidase subunit 8 (COX8A) to the Nterminus of SNAP ($pSNAP_{f}$ vector). The COX8A sequence is obtained from anneal of oligonucleotides according to literature procedure with minor modification.⁴ The oligonucleotides Mito1-1 + Mito1-2 and Mito2-1 + Mito2-2 are annealed respectively to provide Mito1 and Mito2 dsDNAs. The dsDNAs are ligated and insert into $pSNAP_{f}$ vector at EcoR V and EcoR I sites. All the plasmids are amplified in E. coil DH5 α competent cells, and $pSNAP_{f}$ -COX8A plasmid is verified by DNA sequencing.

Mito 1-1: ATCATGTCCGTCCTGACGCCGCTGCTGCTGCGGGGCTTGACAGGC

Mito 2-1: TCGGCCCGGCGGCTCCCAGTGCCGCGCGCCAAGATCCATTCGTTGGGGG

Mito 2-2: AATTCCCCCAACGAATGGATCTTGGCGCGCGCGCACTGGGAGCCG

Cell Culture and labeling

COS-7 cells (Cell Bank of Type Culture Collection of Chinese Academy of Sciences) are cultured in Dulbecoo's modified Eagle's medium (DMEM,Gibco) supplemented with 10% fetal bovine serum (FBS, Hyclone) at 37°C in an atmosphere of 5% CO2/95% air (CO2 incubator, Thermo Scientific). Cells are transiently transfected with pSNAPf-H2B plasmid or pSNAPf-COX8A plasmid by using Lipofectamine 2000 (Invitrogen) following the standard protocol. And stable transfection is established by G418 (Geneticin, Invitrogen) selection. Cells for imaging are seeded on 35 mm glass

bottom culture dishes (Φ =20 mm) and cultured for 24-48 h. The dyes PYBG-TMR and PYBG-BODIPY are dissolved in DMSO (1 mM) by vortexing for 3 min to used as the stock solution. And when the dyes are submitted for cell imaging study, the stock solution are mixed with preheated (37°C) culture medium (DMEM with 10%FBS) and pipetted up and down more then 10 times to obtain the labeling solution. Cell labelling is achieved by incubating with PYBG conjugated dyes: PYBG-TMR (3 μ M) or PYBG-BODIPY (5 μ M) for 30 min at 37°C, and washed with PBS (3×1 mL). After incubate for 2 h in DMEM (10% FBS), the medium is replaced with fresh DMEM (10% FBS) 30 min before imaging.

Purified SNAP protein for kinetics of the reaction

The SNAP protein for kinetics research is achieved from purifying by a C-terminus fused HisTag according to literature procedure.⁶ The SNAP coding sequence is cut from pSNAPf vector using EcoRI and XhoI restriction endonucleases. And the gene fragment is ligating in PET28a(+) (Novagen) using corresponding restriction sites. The PET28a-SNAP plasmid is transformed into E. coli strain BL-21(DE3), and the bacterial is grown in LB medium with 50 μ g/mL Kanamycin at 37 °C to reach the optical density (OD600nm) of 0.8. Then, isopropyl-β-D-thiogalactopyranoside (IPTG, 1 mM) is added for the inducing of the expression of SNAP-HisTag. The culture is grown at 16 °C for 12 h. The subsequent purification of SNAP-HisTag is totally based on the literature method⁶ except a HisTrap HP (GE Healthcare) which is used for the purification. Finally, 6 mg purified SNAP-HisTag (80 μ M in 3 mL elution buffer) is obtained.

Figure 1.PYBG ¹H NMR

Figure 3.ESI ms Spectrum PYBG

Figure4.PYBG-TMR 1H NMR

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 254.0 nm	9.806	30474	0.17	2099
2	PDA 254.0 nm	10.822	22259	0.13	2262
3	PDA 254.0 nm	11.329	56249	0.32	6241
4	PDA 254.0 nm	12.263	16590118	94.42	1586846
5	PDA 254.0 nm	14.092	59885	0.34	6023
6	PDA 254.0 nm	14.339	559655	3.19	56884
7	PDA 254.0 nm	16.097	155446	0.88	10133
8	PDA 254.0 nm	16.960	34151	0.19	3460
9	PDA 254.0 nm	25.002	62350	0.35	5183

Processed Channel Descr.: PDA 254.0 nm

Processed Channel Descr.: PDA 545.0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 545.0 nm	9.802	65852	0.23	4972

	Processed Channel Descr.	RT	Area	% Area	Height
2	PDA 545.0 nm	10.815	52426	0.19	5465
3	PDA 545.0 nm	11.332	101296	0.36	10807
4	PDA 545.0 nm	12.263	26241190	92.74	2095104
5	PDA 545.0 nm	14.092	146147	0.52	12277
6	PDA 545.0 nm	14.339	1241900	4.39	121647
7	PDA 545.0 nm	16.100	355988	1.26	20274
8	PDA 545.0 nm	16.932	91238	0.32	6796

Processed Channel Descr.: PDA 545.0 nm

Figure 5.HPLC spectrum PYBG-TMR

Figure 7.PYBG-BODIPY ¹H NMR

	Trocessed onanner Descr TDA 200.0 mm							
	Processed Channel Descr.	RT	Area	% Area	Height			
1	PDA 280.0 nm	5.261	10630	2.52	1710			
2	PDA 280.0 nm	13.157	408908	96.80	44082			
3	PDA 280.0 nm	15.539	2898	0.69	184			

Processed Channel Descr.: PDA 280.0 nm

Processed Channel Descr.: PDA 290.0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 290.0 nm	5.260	9231	2.40	1485

Processed Channel Descr.: PDA 290.0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
2	PDA 290.0 nm	13.157	373756	97.19	40375
3	PDA 290.0 nm	15.466	1579	0.41	127

Processed Channel Descr.: PDA 500.0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 500.0 nm	13.157	2887604	99.43	310759
2	PDA 500.0 nm	15.526	7639	0.26	891
3	PDA 500.0 nm	19.613	8799	0.30	823

Figure 8.HPLC spectrum PYBG-BODIPY

Figure 9.ESI ms Spectrum PYBG-BODIPY

- 1 G. Lemercier, S. Gendreizig, M. Kindermann, K. Johnsson, Angew. Chem. Int. Ed. Engl. 2007, 46, 4281-4284.
- 2 A. Keppler, S. Gendreizig, T. Gronemeyer, H. Pick, H. Vogel and K. Johnsson, Nat. Biotechnol., 2003, 21, 86.
- 3 H. Yu, Y. Xiao, H. Guo, Org. Lett. 2012, 14, 2014-2017.
- 4 M. Yuan, X. Yin, H. Zheng, C. Ouyang, Z. Zuo, H. Liu, Y. Li, Chemistry An Asian Journal 2009, 4, 707-713.
- 5 T. Elisa, M. N. Elizabeth, J. Jacek, J. L. Stephen, J. Am. Chem. Soc. 20 08, 130, 15776-15777.
- 6. D. Srikun, A. E. Albers, C. I. Nam, A. T. Iavarone and C. J. Chang, J. Am. Chem. Soc., 2010, 132, 4455-4465.