Supplementary Data

Appendix A

Solutions: showing the methods used by a 200 level male NCE chemistry major (M2M) with Serial Number 107 to solve the CPST items including retrospective interview questions and responses <u>CPST item1</u>:

	I:	Explain to me all the steps in your answer to this question
	S107:	I used the formula, $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$, I sorted out data to find V ₁ as
		3.8cm^3 , $P_1 = 5 \text{ atm}$, $V_2 = 1/3 \text{ x} 3.8 \text{cm}^3 = 1.26 \text{cm}^3$. It follows that
	5atm	$\times 3.8cm^3$ $P_2 \times 1.26cm^3$ $P_2 \times 1.26cm^3$
		= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
	I:	What made you to decide to solve the question the way you did?
	S107:	Because the question involves Gas Laws
	I:	Could you solve the question in another way?
CPST item?	5107:	There could be other ways, but I cannot remember
<u>CISI Itelli2.</u>	I:	Explain to me all the steps in your answer to this question
	S107:	I sorted the values i.e. mass of copper anode (M_1) and mass of
		copper cathode (M_2) , all before experiment. Mass of copper anode
		(Mr_1) and mass of copper cathode (Mr_2) all after the experiment. I
		used the equation.
		$\frac{M_1}{M_2} = \frac{Mr_1}{Mr_2}, Mr_2 = \frac{M_1M_2}{M_1}$, I substitute the values and got M ₂
		= 11.63g. (used Ratio and Proportion Method)
•	I:	What made you to decide to solve the question the way you did?
	S107:	Because the question involves calculating mass from the given equation.
	I:	Could you solve the question in another way?
CDCT item?	S107:	There could be other ways but I cannot remember.
CPST Items:	T.	Evolution to me all the stans in your answer to this question
	∎. S107·	Using the stoichiometric equation the mole ratio of N_2 to H_2 is
	51071	1:3 and Mass = Relative Molar mass x Concentration. Therefore,
		Mass = 31 x 1.5g = 46.5g. (used Reaction Chemical Equivalence Method)
•	I:	What made you to decide to solve the question the way you did?
	S107:	Because the question involves mole ratios
•	I:	Could you solve the question in another way?
	\$107:	There may be other ways, but I cannot remember.
CPST item4·		
<u>CI DI Itemi.</u>	I:	Explain to me all the steps in your answer to this question
		impure 100
	S107:	I used the formula, $\frac{1}{pure} \times \frac{1}{1}$, substituting the given data will
	_	give 125%. (used Ratio and Proportion)
•	I:	What made you to decide to solve the question the way you did?
	S107:	The question involves calculating percentage composition.
	1: \$107:	Could you solve the question in another way?
	5107.	110.

Appendix B

Solutions: showing the methods used by a 300 level NCE chemistry major with Serial Number 192 to solve the CPST items including retrospective interview questions and responses <u>CPST item1:</u>

	I:	Explain to me all the steps in your answer to this question
	S192:	Using the general gas equation, i.e. $P_1T_1 = P_2T_2$,
		$P_2 = \frac{P_1 T_1}{T_2}$, substituting the values given into this formula, $P_2 =$
		1.67atm. (used Plug and Chug Method)
	I:	What made you to solve the question the way you did?
	S192:	Because the question involves gas laws.
	I:	Could you solve the question in another way?
	S192:	No, this is the only way I can solve it.
CPST item2:		
	I:	Explain to me all the steps in your answer to this question
	S192:	I sorted the data given. I used the formula $M_2 = \frac{M_1 \times M_{ii}}{M_i}$, and got a final
		answer of 11.88g. (used Ratio and Proportion Method)
	I:	What made you to solve the question the way you did?
	S192:	I just feel that, that is the way to do it.
	I:	Could you solve the question in another way?
	S192N	I: No, I don't think so.
CPST item3:		
	I:	Explain to me all the steps in your answer to this question
	S192:	I first of all calculated the relative molecular mass of ammonia as 34g, then I got
	_	stuck and could not proceed from there (started but stucked)
•	I:	What made you to solve the question the way you did?
	S192:	I did solve the question completely, I could not continue from I
	-	stopped.
	I:	Could you solve the question in another way?
CDCT it and	\$192:	No.
<u>CPS1 item4:</u>	т.	Emploin to me all the store in your answer to this question
	1:	Explain to me all the steps in your answer to this question
	S192:	I sorted out given data. Using the percentage purity formula, i.e. $\frac{impure}{pure} \times \frac{100}{1}$,
		I substituted and got the answer as 79.9%. (used Ratio and Proportion Method)
	I:	What made you to solve the question the way you did?
	S192:	It involves calculating percentage purity.
	I:	Could you solve the question in another way?
	S192:	No.

Appendix C

Solutions: shows solve the CPST	wing the Γ items	e methods used by a 200 level NCE non-major with Serial Number 16 to including retrospective interview questions and responses
<u>CPST item1:</u>		
	I: S16:	Explain to me all the steps in your answer to this question I arranged the given data, $P_1 = 5.00$ atm, $T_1 = 0^{\circ}$ C, $T_2 = 546^{\circ}$ C. I used $P_1T_1 = P_2T_2$, $P_2 = P_1T_1 \times T_2$, $P_2 = 5.00 \times 0^{\circ}$ C x 546°C. (used Plug and Chug Method)
	I: S16 [.]	What made you to solve the question the way you did? Because it involves gas laws isn't it?
	I:	Could you solve the question in another way?
CPST item2:	510.	110.
	I: S16:	Explain to me all the steps in your answer to this question The given data were, mass anode before experiment was = $9.20g$, that cathode was
		= 7.75g. After experiment anode was = 6.09g. Then cathode = $\frac{6.00g \times 7.75g}{9.20g}$.
	I:	(<u>used Ratio and Proportion Method</u>) What made you to decide to solve the question the way you did?
	S16:	It involves electrolysis.
	I:	Could you solve the question in another way?
	S16:	No.
CPST Item 3:		
	I:	Explain to me all the steps in your answer to this question
	S16:	I wrote the given equation that $N_2 + 3H_2$ — $\mathbf{P}NH_3$ from the equation 1 mole of hydrogen would produce 2 moles of ammonia. (<i>started using Reaction</i> <i>Chemical Equivalence Method but could not complete the solution</i>)
	Ţ.	<u>Chemical Equivalence Method but could not complete the solution</u>
	1. S16:	Linst quess the answer
	I •	Could you solve the question in another way?
•	S16.	No
CPST Item 4:	510.	
	I:	Explain to me all the steps in your answer to this question
	S16:	Mass of pure oxide was $3.9/8g = 100\%$ purity.
		Mass of black oxide was $3.1/8g = ?$
		% composition of black oxide = $\frac{3.178g}{3.978g} \times \frac{100}{1} = 79.88g$.
		(used Ratio and Proportion Method)
	I:	What made you to decide to solve the question the way you did?
	S16:	The question involves calculating percentage composition of
		substances.
	I:	Could you solve the question in another way?
	S16:	No.

Appendix D

Solutions: showing the methods used by a 300 level NCE non-major with Serial Number 59 to solve the CPST items including retrospective interview questions and responses CPST Item1:

<u></u> .	I:	Explain to me all the steps in your answer to this question
	S59:	I arranged the given data, $P_1 = 5.00$ atm, T = 0°C + 273k = - 273k
		$T_1 = 0C + 273k = 273k$ $T_2 = 546^{\circ}C + 273k = 819k$
		$P_2 = ?$
		I used $\frac{P_1}{T_1} = \frac{P_2}{T_2}, P_2 = \frac{P_1 \times T_2}{T_1}$
		$P_2 = \frac{5.00atm \ x \ 819k}{273k} = 15atm.$
	_	$P_2 = 15 \text{ atm.} (used Plug and Chug Method)$
	1:	What made you to solve the question the way you did?
	559: I•	Could you solve the question in another way?
	S59:	No.
CPST Item2:	т.	Emploin 4, march 11 the standing means an annual to this ansation
	1: \$59·	Explain to me all the steps in your answer to this question I sorted out the given data i.e. mass of anode before experiment -9.20σ and that
	007.	of cathode = $7.75g$. Now the experiment mass of anode 6.00g, that of cathode = ?
		$6.00g \times 7.75g = 5.05$
		Therefore, mass of cathode after the experiment = $\frac{9.20g}{9.20g}$ = 5.05g. (
		used Ratio and Proportion Method)
	I:	What made you to solve the question the way you did?
	S59:	Because it was an electrolysis question.
	1: \$59·	No
CPST Item 3:	007.	110.
<u>er 51 item 5.</u>	I: S59:	Explain to me all the steps in your answer to this question I used the formula
		Mass = $\frac{Concentration of NH^{3}}{Molar mass of NH^{3}}$
		Mole of hydrogen $= 1.0$
		Concentration in gram of $NH_3 = ?$
		Molar mass of $NH_3 = 14 + (1 \times 3)$ - 17
		Concentration in gram/of $NH_3 = 17$ (used Plug and Chug Method)
	I:	What made you to solve the question the way you did?
	S59:	The question involved calculating moles.
	1:	Could you solve the question in another way?
CPST Item 4.	339:	100.
<u></u>	I:	Explain to me all the steps in your answer to this question
	S59:	I arranged the given data
		Mass of Pure Cu = $3.178g = 100\%$ purity

	Mass of black oxide = $3.978g = ?$
	% composition of black oxide = $\frac{Mass of Pure Cu}{X} \times \frac{100}{X}$
	Mass of black oxide 1
	\therefore % composition of black oxide = 79.88g.
	(used Ratio and Proportion Method)
N3F:	Because I used the correct formula.
I:	What made you to solve the question the way you did?
S59:	Because it involves calculating percentage composition.
I:	Could you solve the question in another way?
S59:	No.