SUPPORTING INFORMATION

Metal-mediated Fabrication of New Functional G-quartet-based Supramolecular Nanostructure and Potential Application as Controlled Drug Release System

Dan Hu, Jinsong Ren* and Xiaogang Qu*

Figure S1. Fluorescence spectra of NMM mixed with 5'-GMP in deionized water upon addition of different salts. (a) Control (black), 1 M LiCl (red), 1 M NaCl (blue), 1 M KCl (cyan) and 8 mM SrCl₂ (blue). [NMM] = 2×10^{-6} M, [GMP] = 2×10^{-2} M. (b) Control (black), 1 M KCl (red), 8 mM SrCl₂ (blue). [NMM] = 2×10^{-6} M, [GMP] = 1×10^{-1} M.

Figure S2. Structures of the nucleotides used for these studies.

Figure S3. Histograms showing the width (a) and length (b) of a sample with 100 distinct wires

Figure S4. Proposed binding site for Sr^{2+} in ordered 5'-GMP octamers. The binding site defined by the eight O6 atoms of neighboring guanine bases are believed to be highly Sr^{2+} -specific structure-directing sites.

Table S1. Chemical shift of excessive NaCl (free NaCl), Na⁺ bound to the phosphate groups (surface Na⁺ ions) and Na⁺ ions residing inside the G-quartet channel (channel Na⁺ ions) in solid-state ²³Na NMR spectra.

Ion type Sample type	Free Na ⁺ ions	Surface Na ⁺ ions	Channel Na ⁺ ions
Na-gel ¹	7 ppm	-1 ppm	-19 ppm
Lipophilic G-quadruplex ²	_	_	-18ppm
Na-gel ³	7 ppm	-4 ppm	-19 ppm
Na-gel ⁴	7 ppm	-5 ppm	-20 ppm
Na-gel(in our manuscript)	No signal	-7.5 ppm	-21.5 ppm
Na-Sr gel(in our manuscript)	6.8 ppm	-8.2 ppm	No signal

Figure S5. Solid-state ²³Na NMR MAS spectra of (a) Na₂ (5'-GMP) gel. (b) Na₂ (5'-GMP)/Sr²⁺ nanowires.

Solid-state ²³Na NMR approach is a useful technique for detecting other metal-directed self-assembly systems as well as in nucleic acids. In this study, we apply ²³Na magic-angle spinning (MAS) to Na₂ (5'-GMP)/Sr²⁺ nanowires. Figure S5 shows portions of the solid state ²³Na NMR spectra for Na₂ (5'-GMP) in the absence or presence of 8 mM Sr^{2+} . As can be seen in *Figure S5a*, the ²³Na NMR signal at approximately -7.5 ppm is attributed to the Na^+ ions bound to the phosphate groups (denoted as the surface Na⁺ ions in this study), and the small peak at -21.5 ppm is due to the Na⁺ ions residing inside the G-quartet channel (denoted as the channel Na⁺ ions). This ²³Na chemical shift value is in excellent agreement with the NMR signature obtained for channel Na⁺ cations by solid-state ²³Na NMR.¹⁻⁴ In the case of Na₂ (5'-GMP)/Sr²⁺ nanowires, as shown in *Figure S5*b, the sharp peak centered at $\delta = 6.8$ ppm is assigned to the presence of excessive NaCl in the nanowires (denoted as free Na⁺ ions in this study). The small peak at $\delta = -8.2$ ppm is attributed to surface Na⁺ ions. It is worth noting that the signal at -21.5 ppm which is characteristic of the channel Na⁺ ions disappeared completely. This implies that the presence of Sr²⁺ inhibits the entering of Na⁺ into the G-quadruplex channel. Thus, the ²³Na NMR signal associated with the free Na⁺ ions appeared. Moreover, the fluorescence enhancement of NMM indicates the existence of G-quartet structures in Na₂ (5'-GMP)/Sr²⁺ nanowires. These results unambiguously demonstrate that the G-quartet structures are promoted by Sr^{2+} ions, which is consist with recent crystallographic and NMR studies that Sr^{2+} ions are observed in every other guanine tetrad plane, sitting on the fourfold axis and associated to the eight O6 atoms of neighboring guanine bases. 5-7

Figure S6. XRD patterns of 5'-GMP /Sr²⁺ nanowires prepared in the absence (bottom) and presence (top) of 2 μ M NMM.

Figure S7. EDX data of synthesized functional nanowires, $[NMM] = 2 \times 10^{-6} \text{ M}$, $[GMP] = 2 \times 10^{-2} \text{ M}$.

Figure S8. Absorbance spectra of the supernatant of the mixture of NMM and 5'-GMP in deionized water, and the following: no extra agent (black), 8 mM SrCl₂ (red), or 8 mM SrCl₂ plus 10 mM Na₂EDTA (blue) at ambient temperature.

Figure S9. Absorbance spectra of the supernatant of the mixture of (a) 5 μ M NMM and (b) 10 μ M cationic PTCDI derivative and 5'-IMP in deionized water, and the following: no extra agent (black), 8 mM SrCl2 (red), or 8 mM SrCl2 plus 10 mM Na₂EDTA (blue) at ambient temperature. [IMP] = 2×10^{-2} M.

Figure S10. Encapsulation of cationic PTCDI derivative into four nucleotides mediated by 8 mM Sr^{2+} . [PTCDI derivative] = 10 μ M. [AMP] = [UMP] = [GMP] = [IMP] = 2×10^{-2} M.

Figure S11. SEM images of NMM mixed with (a) 5'-GMP, (b) 5'-IMP, (c) 5'-AMP, (d) 5'-UMP upon the addition of 8 mM SrCl₂ in deionized water. [NMM] = 2×10^{-6} M, [GMP] = [IMP] = [AMP] = [UMP] = 2×10^{-2} M.

Figure S12. Encapsulation of (a) hemin and (b) perylene tetracarboxylic acid into the Sr^{2+}/GMP nanowires. Absorbance spectra of the supernatant of the mixture of 10 µM hemin or perylene tetracarboxylic acid and 5'-GMP in deionized water, and the following: no extra agent (black), 8 mM $SrCl_2$ (red), [GMP] = 2×10^{-2} M.

(c)

(**d**)

(b)

Figure S13. SEM images of various amounts of NMM (a) 0 μ M, (b) 2 μ M, (c) 5 μ M, (d) 10 μ M, (e) 20 μ M, mixed with 5'-GMP and SrCl₂ in deionized water. [GMP] = 2×10⁻² M, [SrCl₂] = 8 mM.

Figure S14. Fluorescence spectra of NMM with various DNA forms and GMP (a) before and (b) after addition of 8 mM SrCl₂. [NMM] = 2×10^{-6} M, [duplex] = [triplex] = [*i*-motif] = [quadruplex] = 1×10^{-6} M, [GMP] = 2×10^{-2} M.

Reference

- 1. G. Wu and A. Wong, *Chem. Commun.*, 2001, 2658-2659.
- A. Wong, J. C. Fettinger, S. L. Forman, J. T. Davis and G. Wu, J. Am. Chem. Soc. , 2002, 124, 742-743.
- 3. A. Wong and G. Wu, J. Am. Chem. Soc. , 2003, **125**, 13895-13905.
- 4. G. Wu and A. Wong, Biochem. Biophys. Res. Commun., 2004, 323, 1139-1144.
- 5. X. Shi, J. C. Fettinger and J. T. Davis, Angew. Chem. Int. Ed., 2001, 40, 2827-2831.
- J. Deng, Y. Xiong and M. Sundaralingam, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 13665-13670.
- 7. R. Ida, I. C. Kwan and G. Wu, Chem. Commun., 2007, 795-797.