Supporting Information

A self-referenced nanodosimeter for reaction based ratiometric imaging of hypochlorous acid in living cells

Xuanjun Wu,^a Zhu Li,^a Liu Yang,^a Jiahuai Han^b and Shoufa Han^{a,*}

Scheme S1. Synthesis of ThioRB-APTS

Fig. S1 Kinetic analysis of the reaction rates between ThioRB-FITC-MSN (1 mg ml⁻¹) and NaOCl (0-100 μ M as indicated). The fluorescence emission intensity at 586 nm was recorded as a function of time using an excitation wavelength of 560 nm.

Fig. S2 Genesis of RB-CM from ThioRB-ester in aqueous acetonitrile (50%) supplemented with NaOCl.

1

Fig. S3 Fluorescence emission spectra of FITC and activated ThioRB displayed on MSN (1 mg ml⁻¹) in Na₂HPO₄-citrate buffer (100 mM, pH 5) containing various amounts of NaOCl. Analyte concentration: 0, 5, 10, 20, 30, 40, 50, 60, and 80 μ M. (A) The fluorescence emission intensity of FITC was obtained using an excitation wavelength at 490 nm; (B) the fluorescence emission intensity of activated ThioRB was obtained using an excitation wavelength at 560 nm; (C) the titration curve was plotted by fluorescence emission intensity at 586 nm over that at 526 nm as a function of HOCl concentration.

Fig. S4 Fluorescence emission spectra of FITC and activated ThioRB doped in MSN (1 mg ml⁻¹) in PBS (pH 7.4) containing various amounts of NaOCl (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, and 80 μ M). (A) The fluorescence emission intensity of FITC was obtained using an excitation wavelength of 490 nm; (B) the fluorescence emission intensity of activated ThioRB was obtained using an excitation wavelength at 560 nm; (C) the titration curve was plotted by fluorescence emission intensity at 586 nm over that at 526 nm as a function of HOCl concentration.

Fig. S5 Fluorescence emission of ThioRB-ester (10 μ M) in PBS (100 mM, pH 7.4) buffered CH₃CN (0, 25%, 50%, 75% and 100%, v/v of PBS/ CH₃CN) supplemented with or without NaOCl (100 μ M). The blue columns showed the fluorescence of ThioRB-ester in PBS buffered CH₃CN spiked with NaOCl. The dark columns showed the fluorescence emission of ThioRB-ester in PBS buffered CH₃CN with no addition. The fluorescence emission intensity at 586 nm was recorded using an excitation wavelength of 560 nm.

2

Fig. S6 Visual images of ThioRB-FITC-MSN (1 mg ml⁻¹) in DMEM medium spiked with or without NaOCl (0.5 mM). The images of ThioRB-FITC-MSN in PBS supplemented with or without NaOCl (0.5 mM) in PBS (100 mM, pH 7.4) were used as the controls.

Fig. S7 Fluorescence emission of ThioRB-FITC-MSN (0.5 mg ml⁻¹) in PBS (pH 7) supplemented with one of the following species: $H_2O_2(1 \text{ mM})$, $OH^-(1 \text{ mM}, \text{ in blue})$, ROO• (1 mM), NO• (1 mM, in black, bottom), $O_2^{-\bullet}$ (1 mM) or OCl⁻ (0.1 mM, in red); $\lambda ex@490 \text{ nm}$; (B) $H_2O_2(1 \text{ mM})$, $OH^{\bullet}(1 \text{ mM})$, ROO• (1 mM), $OQ^{-\bullet}(1 \text{ mM})$, $OQ^{-\bullet}(1 \text{ mM})$ or OCl⁻ (0.1 mM, in red); $\lambda ex@560 \text{ nm}$. (A) The fluorescence spectra of ThioRB-FITC-MSN were recorded using an excitation wavelength of 490 nm, showing the effects of the species on the emission of fluorescein; (B) the fluorescence spectra of ThioRB-FITC-MSN were recorded using an excitation wavelength of 560 nm.

Fig. S8 Fluorescence of ThioRB-FITC-MSN (0.5 mg ml⁻¹) in PBS buffer (pH 7.4) supplemented with each of the following species: (A) K⁺(1 mM), Na⁺(1 mM), Cu²⁺(1 mM), Mn²⁺(1 mM), Mg²⁺(1 mM), Ca²⁺ (1 mM), Zn²⁺ (0.1 mM), Fe³⁺ (0.1 mM), Fe²⁺ (0.1 mM), Co²⁺ (0.1 mM), Ni²⁺ (0.1 mM), Pb²⁺ (0.1 mM) or OCI⁻ (0.1 mM, in red); $\lambda ex@490$ nm; (B) K⁺ (1 mM), Na⁺ (1 mM), Cu²⁺ (1 mM), Mn²⁺ (1 mM), Mg²⁺ (1 mM), Ca²⁺ (1 mM), Ca²⁺ (1 mM), Zn²⁺ (1 mM), Fe³⁺ (1 mM), Fe²⁺ (1 mM), Co²⁺ (1 mM), Ni²⁺ (1 mM), Pb²⁺ (1 mM) or OCI⁻ (0.1 mM), in red); (A) The fluorescence spectra of ThioRB-FITC-MSN were recorded using $\lambda ex@560$ nm, showing the degree of ThioRB activation.

3

FL1-H (FITC signal)

Fig. S9 Flow cytometry analysis of lysosomal HOCl in HeLa (A) and L929 cells (B) with ThioRB-FITC-MSN under single wavelength excitation ($\lambda ex@488$ nm). The cell populations marked in green were incubated in PBS supplemented with 0.5 mM NaOCl and the cell populations marked in red were treated with 1 mM NaOCl. The control cell populations shown in dark was incubated in PBS with no addition. The fluorescence of FITC (FL1) was collected @510-535 nm while that of activated ThioRB signal was collected @565-625 nm (FL2).

Fig. S10 Cytotoxicity of NaOCl on L929 cells. L929 cells were incubated with various amounts of NaOCl in PBS (0-1 mM) for 0-30 min as indicated and then stained with trypan blue. Cell viability was determined by the trypan blue exclusion assay.