SUPPORTING INFORMATION

Additive Effects on Palladium-Catalyzed Deprotonative-Cross-Coupling Processes (DCCP) of sp³ C–H Bonds in Diarylmethanes

Ana Bellomo, Jiadi Zhang, Nisalak Trongsiriwat and Patrick J. Walsh*

Roy and Diana Vagelos Laboratories, Penn/Merck High-Throughput Experimentation Laboratory, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

TABLE OF CONTENTS

1.	General Methods	S2
2.	Procedure and Characterization for the Room-Temperature Deprotonation/Benzylation	
	of Diphenylmethane and 2-Benzylpyridine	S 3
3.	General Procedure and Characterization for the Pd-Catalyzed DCCP of Diarylmethanes	
	in the Presence of Additives	S3-S12
4.	High-throughput Experimentation Screenings	S13
5.	References	S25
6.	NMR Spectra	S26

General Methods. All reactions were performed under nitrogen using oven-dried glassware and standard Schlenk or vacuum line techniques. Air- and moisture sensitive solutions were handled under nitrogen and transferred *via* syringe. Anhydrous CPME, DME and diglyme were purchased from Sigma-Aldrich and used as solvent without further purification. Unless otherwise stated, reagents were commercially available and used as purchased without further purification. Chemicals were obtained from Sigma-Aldrich, Acros, TCI America or Matrix Scientific. The progress of the reactions was monitored by thin-layer chromatography using Whatman Partisil K6F 250 μ m precoated 60 Å silica gel plates and visualized by short-wave ultraviolet light as well as by treatment with ceric ammonium molybdate (CAM) stain or iodine. Silica gel (230–400 mesh, Silicycle) was used for flash chromatography. The ¹H NMR and ¹³C{¹H} NMR spectra were obtained using a Brüker AM-500 Fourier-transform NMR spectrometer at 500 and 125 MHz, respectively. Chemical shifts are reported in hertz. The infrared spectra were obtained on KBr plates using a Perkin-Elmer Spectrum 100 Series FTIR spectrometer. High resolution mass spectrometry (HRMS) data were obtained on a Waters LC-TOF mass spectrometer (model LCT-XE Premier) using chemical ionization (CI) or electrospray ionization (ESI) in positive or negative mode, depending on the analyte. Melting points were determined on a Unimelt Thomas-Hoover melting point apparatus and are uncorrected.

Procedure and Characterization for the Room-Temperature Deprotonation/Benzylation of Diphenylmethane (1a) and 2-Benzylpyridine (1b).

An oven-dried reaction vial equipped with a stir bar was charged with 3 equiv of the base (0.3 mmol) under a nitrogen atmosphere followed by 1 mL of dry CPME, and the reaction mixture was stirred for 5 min. Substrate **1a** or **1b** (0.3 mmol) was then added to the reaction followed by benzyl chloride (11.5 μ L, 0.1 mmol). The reaction mixture was stirred for 12 h at rt and then quenched with two drops of H₂O, diluted with 3 mL of ethyl acetate, and filtered over a pad of MgSO₄ and silica. The pad was rinsed with additional ethyl acetate and the solution was concentrated under vacuum. The crude material was loaded onto a silica gel column and purified by flash chromatography. In the case of the use of 12-crown-4, the additive was added along with LiN(SiMe₃)₂.

1,1,2-triphenylethane

The reaction was performed as described above using $KN(SiMe_3)_2$ as base. The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 2:98) to give the product (24.7 mg, 96% yield) as a colorless oil. $R_f = 0.25$ (hexanes). The NMR spectral data match the previously published data.¹

2-(1,2-diphenylethyl)pyridine

The reaction was performed as described above using $KN(SiMe_3)_2$ as base. The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 1:9) to give the product (25.9 mg, 99% yield) as a colorless oil. $R_f = 0.33$ (EtOAc:hexanes = 1:9). The NMR spectral data match the previously published data.²

General Procedure and Characterization for the Pd-Catalyzed DCCP of Diarylmethanes in the presence of Additives.

An oven-dried reaction vial charged with a solution (from a stock solution) of $Pd(OAc)_2$ (1.1 mg, 5 mol %) and NiXantphos (5.1 mg, 10 mol %) in 1 mL THF and the solvent was evaporated at rt under reduced pressure. The vial was equipped with a stir bar, taken inside the glovebox and it was charged with the corresponding base (0.3 mmol), additive (0.6 mmol 12-crown-4 or 0.03 mmol 15-crown-5 or 0.6 mmol HMTETA or 0.6 mmol diglyme) and 1 mL of dry CPME. After stirring for 30 min., the diarylmethane (0.3 mmol when using NaN(SiMe₃)₂/15-crown-5 and 0.12 mmol for all other cases) was added to the reaction followed by the aryl bromide (0.1 mmol). The vial was sealed and the reaction mixture was stirred for 12 h at rt. The reaction was quenched with two drops of H₂O, diluted with 3 mL of ethyl acetate, and filtered over a pad of MgSO₄ and silica. The pad was rinsed with additional ethyl acetate, and the solution was concentrated under vacuum. The crude material was loaded onto a silica gel column and purified by flash chromatography.

3aa - (4-tert-butylphenyl)diphenylmethane

The reaction was performed following the General Procedure described above with **1a** (50.2 μ L, 0.3 mmol), NaN(SiMe₃)₂ (55.0 mg, 0.3 mmol), 15-crown-5 (5.9 μ L, 0.03 mmol) and **2a** (17.3 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 2:98) to give the product (30.5 mg, 99% yield) as a white solid. R_f = 0.33 (hexanes). The NMR spectral data match the previously published data.³

3ab - (4-fluorophenyl)diphenylmethane

The reaction was performed following the General Procedure described above with **1a** (50.2 μ L, 0.3 mmol), NaN(SiMe₃)₂ (55.2 mg, 0.3 mmol), 15-crown-5 (5.9 μ L, 0.03 mmol) and **2b** (11.0 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes) to give the product (16.6 mg, 63% yield) as a white solid. R_f = 0.33 (hexanes). The NMR spectral data match the previously published data.³

3ad - (4-methoxyphenyl)diphenylmethane

The reaction was performed following the General Procedure described above with **1a** (20.1 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2d** (12.5 μ L, 0.1 mmol) or **1a** (50.2 μ L, 0.3 mmol), NaN(SiMe₃)₂ (55.0 mg, 0.3 mmol), 15-crown-5 (5.9 μ L, 0.03 mmol) and **2d** (12.5 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 5:95) to give the product (27.1 mg, 99% yield and 26.7 mg, 97% yield respectively) as a colorless oil. R_{*f*} = 0.25 (hexanes). The NMR spectral data match the previously published data.³

3ae – (*N*,*N*-dimethylaminophenyl)diphenylmethane

The reaction was performed following the General Procedure described above with **1a** (50.2 μ L, 0.3 mmol), NaN(SiMe₃)₂ (55.0 mg, 0.3 mmol), 15-crown-5 (5.9 μ L, 0.03 mmol) and **2e** (20.0 mg, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (29.0 mg, 99% yield) as a white solid. R_f = 0.3 (EtOAc:hexanes = 5:95). The NMR spectral data match the previously published data.³

3af – (1-naphthyl)diphenylmethane

The reaction was performed following the General Procedure described above with **1a** (20.1 µL, 0.12 mmol), NaN(SiMe₃)₂ (54.9 mg, 0.3 mmol), 15-crown-5 (5.9 µL, 0.03 mmol) and **2f** (14.0 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 3:97) to give the product (22.8 mg, 77% yield) as a white solid. $R_f = 0.33$ (hexanes); m.p. = 136–139 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.45 – 7.32 (m, 3H), 7.30 – 7.24 (m, 4H), 7.24 – 7.18 (m, 2H), 7.14 – 7.07 (m, 4H), 6.94 (d, J = 7.0 Hz, 1H), 6.27 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 143.9, 140.1, 134.1, 132.1, 129.9, 128.9, 128.6, 127.8, 127.5, 126.6, 126.3, 125.6, 125.4, 124.5, 53.4 ppm; IR (thin film): 3058, 3025, 1598, 1493, 1449, 1395, 1030, 787, 725, 699 cm⁻¹; HRMS calcd. for C₂₃H₁₈⁺ 294.1409, observed 294.1396 [M]⁺.

3ag - (4-cyanophenyl)diphenylmethane

The reaction was performed following the General Procedure described above with **1a** (20.1 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.1 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2g** (18.2 mg, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 5:95) to give the product (18.1 mg, 67% yield) as a colorless oil. R_f = 0.25 (hexanes). The NMR spectral data match the previously published data.⁴

3ai - (2-pyridyl)diphenylmethane

The reaction was performed following the General Procedure described above with **1a** (20.1 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2i** (9.5 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 2:8) to give the product (18.3 mg, 75% yield) as a white solid. R_f = 0.40 (EtOAc:hexanes = 2:8). The NMR spectral data match the previously published data.⁵

3ba - (4-tert-butylphenyl)(2-pyridyl)phenylmethane

The reaction was performed following the General Procedure described above with **1b** (19.3 µL, 0.12 mmol), LiN(SiMe₃)₂ (50.0 mg, 0.3 mmol), 12-crown-4 (97.1 µL, 0.6 mmol) and **2a** (17.3 µL, 0.1 mmol) or **1b** (50.8 µL, 0.3 mmol), NaN(SiMe₃)₂ (55.0 mg, 0.3 mmol), diglyme (85.9 µL, 0.6 mmol) and **2a** (17.3 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 1:9) to give the product (28.9 mg, 96% yield and 30.3 mg, 99% yield respectively) as a colorless oil. $R_f = 0.3$ (EtOAc:hexanes = 1:9). The NMR spectral data match the previously published data.³

3bb - (4-fluorophenyl)(2-pyridyl)phenylmethane

The reaction was performed following the General Procedure described above with **1b** (50.8 µL, 0.3 mmol), NaN(SiMe₃)₂ (55.1 mg, 0.3 mmol), 15-crown-5 (5.9 µL, 0.03 mmol) and **2b** (11.0 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 1:9) to give the product (26.0 mg, 99% yield) as a colorless oil. $R_f = 0.50$ (EtOAc:hexanes = 2:8); ¹H NMR (500 MHz, CDCl₃): δ 8.62 – 8.56 (m, 1H), 7.59 (td, J = 7.8, 1.5 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 7.17 – 7.09 (m, 5H), 7.07 (d, J = 8.0 Hz, 1H), 7.00 – 6.93 (m, 2H), 5.65 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.2, 161.8 (d, J = 244 Hz), 149.9, 142.9, 138.8 (d, J = 3 Hz), 136.7, 131.0 (d, J = 8 Hz), 129.5, 128.7, 126.9, 123.9, 121.7, 115.4 (d, J = 21 Hz), 58.8 ppm; IR (thin film): 3060, 3028, 1603, 1587, 1507, 1433, 1223, 1159, 817, 748, 699 cm⁻¹; HRMS calcd. for C₁₈H₁₅NF⁺ 264.1189, observed 264.1184 [MH]⁺.

3bc - (4-trifluoromethylphenyl)(2-pyridyl)phenylmethane

The reaction was performed following the General Procedure described above with **1b** (50.8 µL, 0.3 mmol), LiN(SiMe₃)₂ (33.5 mg, 0.2 mmol), 12-crown-4 (97.1 µL, 0.6 mmol) and **2c** (14.0 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95 to 2:8) to give the product (24.5 mg, 78% yield) as a colorless oil. $R_f = 0.5$ (EtOAc:hexanes = 2:8); ¹H NMR (500 MHz, CDCl₃): δ 8.65 – 8.57 (m, 1H), 7.62 (td, J = 7.5, 2.0 Hz, 1H), 7.34 – 7.27 (m, 4H), 7.27 – 7.22 (m, 1H), 7.19 – 7.13 (m, 3H), 7.09 (d, J = 8.0 Hz, 1H), 5.72 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.5, 150.0, 147.1, 142.1, 136.8, 129.9, 129.5, 128.8, 127.1, 125.5 (q, J = 4 Hz), 124.0, 121.9, 59.3 ppm; IR (thin film): 1326, 1164, 1122, 1068, 700 cm⁻¹; HRMS calcd. for C₁₉H₁₅NF₃⁺ 314.1157, observed 314.1158 [MH]⁺.

${\bf 3bd-(4-methoxyphenyl)(2-pyridyl) phenylmethane}$

The reaction was performed following the General Procedure described above with **1b** (50.8 μ L, 0.3 mmol), NaN(SiMe₃)₂ (55.1 mg, 0.3 mmol), 15-crown-5 (5.9 μ L, 0.03 mmol) and **2d** (12.5 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with CH₂Cl₂, then with EtOAc:hexanes = 2:8) to give the product (27.6 mg, 99% yield) as a colorless oil. R_f = 0.33 (EtOAc:hexanes = 2:8). The NMR spectral data match the previously published data.⁶

3be - (4-N,N-dimethylaminophenyl)(2-pyridyl)phenylmethane

The reaction was performed following the General Procedure described above with **1b** (50.8 µL, 0.3 mmol), NaN(SiMe₃)₂ (55.0 mg, 0.3 mmol), 15-crown-5 (5.9 µL, 0.03 mmol) and **2e** (20.0 mg, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 1:9 to 2:8) to give the product (27.0 mg, 94% yield) as a white solid. $R_f = 0.3$ (EtOAc:hexanes = 2:8); m.p. = 94–96 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.60 – 8.54 (m, 1H), 7.56 (td, J = 7.5, 2.0 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.22 – 7.13 (m, 3H), 7.12 – 7.06 (m, 2H), 7.03 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 8.5 Hz, 2H), 5.61 (s, 1H) , 2.90 (s, 6H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.2, 149.6, 149.4, 143.7, 136.5, 130.9, 130.1, 129.5, 128.5, 126.4, 123.8, 121.4, 112.8, 58.7, 40.8 ppm; IR (thin film): 2885, 2800, 1614, 1587, 1520, 1432, 1349, 748, 699 cm⁻¹; HRMS calcd. for C₂₀H₂₁N₂⁺ 289.1705, observed 289.1711 [MH]⁺.

3bf - (1-naphthyl)(2-pyridyl)phenylmethane

The reaction was performed following the General Procedure described above with **1b** (50.8 µL, 0.3 mmol), NaN(SiMe₃)₂ (55.1 mg, 0.3 mmol), 15-crown-5 (5.9 µL, 0.03 mmol) and **2f** (14.0 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 1:9) to give the product (29.3 mg, 99% yield) as a white solid. $R_f = 0.25$ (EtOAc:hexanes = 1:9); m.p. = 119–121 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.65 – 8.56 (m, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.52 (td, J = 7.8, 2.0 Hz, 1H), 7.44 – 7.32 (m, 3H), 7.32 – 7.25 (m, 2H), 7.25 – 7.18 (m, 1H), 7.17 – 7.07 (m, 3H), 6.98 (d, J = 7.5 Hz, 2H), 6.45 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.5, 149.9, 142.7, 139.2, 136.6, 134.3, 132.3, 129.9, 128.9, 128.7, 127.7, 127.5, 126.8, 126.4, 125.7, 125.5, 124.5, 124.2, 121.6, 56.2 ppm; IR (thin

film): 3059, 1587, 1466, 1432, 789, 775, 728, 700 cm⁻¹; HRMS calcd. for $C_{22}H_{18}N^+$ 296.1439, observed 296.1443 [MH]⁺.

3bg - (4-cyanophenyl)(2-pyridyl)phenylmethane

The reaction was performed following the General Procedure described above with **1b** (19.3 µL, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 µL, 0.6 mmol) and **2g** (18.2 mg, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 1:9 to 2:8) to give the product (23.1 mg, 86% yield) as a colorless oil. $R_f = 0.2$ (EtOAc:hexanes = 2:8); ¹H NMR (500 MHz, CDCl₃): δ 8.63 – 8.58 (m, 1H), 7.64 (td, J = 7.8, 2.0 Hz, 1H), 7.60 – 7.56 (m, 2H), 7.35 – 7.24 (m, 5H), 7.20 – 7.13 (m, 3H), 7.09 (d, J = 8.0 Hz, 1H), 5.70 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.9, 150.0, 148.6, 141.5, 137.0, 132.4, 130.4, 129.4, 128.9, 127.3, 124.0, 122.1, 119.1, 110.6, 59.4 ppm; IR (thin film): 3062, 2227, 1587, 1433 cm⁻¹; HRMS calcd. for C₁₉H₁₅N₂⁺ 271.1235, observed 271.1233 [MH]⁺.

3bi – 2,2'-(phenylmethylene)dipyridine

The reaction was performed following the General Procedure described above with **1b** (19.3 μ L, 0.12 mmol), NaN(SiMe₃)₂ (55.0 mg, 0.3 mmol), HMTETA (163.2 μ L, 0.6 mmol) and **2i** (9.5 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 6:4 to EtOAc) to give the product (23.7 mg, 96% yield) as a white solid. R_f = 0.45 (EtOAc). The NMR spectral data match the previously published data.⁷

3ca - (4-tert-butylphenyl)(4-methoxyphenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1c** (19.8 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2a** (17.3 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with CH₂Cl₂:hexanes = 4:96 to 15:85) to give the product (17.3 mg, 52% yield) as a light yellow oil. R_f = 0.25 (EtOAc:hexanes = 2:98); ¹H NMR (500 MHz, CDCl₃): δ 7.31 –

7.23 (m, 4H), 7.22 – 7.16 (m, 1H), 7.14 – 7.09 (m, 2H), 7.06 – 7.00 (m, 4H), 6.84 – 6.78 (m, 2H), 5.45 (s, 1H), 3.77 (s, 3H), 1.30 (s, 9H) ppm; ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 158.2, 149.2, 144.8, 141.3, 136.6, 130.6, 129.6, 129.1, 128.4, 126.3, 125.3, 113.9, 55.8, 55.4, 34.6, 31.6 ppm; IR (thin film): 2961, 1608, 1509, 1248, 1177, 1036, 822, 701 cm⁻¹; HRMS calcd. for C₂₄H₂₆O⁺ 330.1984, observed 330.1980 [M]⁺.

$\label{eq:constraint} 3cd-(4-methoxyphenyl)(4-methoxyphenyl)phenylmethane$

The reaction was performed following the General Procedure described above with **1c** (19.8 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2d** (12.5 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 2:98) to give the product (14.4 mg, 55% yield) as a colorless oil. R_f = 0.25 (EtOAc:hexanes = 5:95). The NMR spectral data match the previously published data.⁸

3ce - (4-N,N-dimethylaminophenyl)(4-methoxyphenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1c** (19.8 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.0 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2e** (20.0 mg, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 5:95) to give the product (19.5 mg, 61% yield) as a colorless oil. R_f = 0.25 (EtOAc:hexanes = 5:95). The NMR spectral data match the previously published data.³

3cf - (1-naphthyl)(4-methoxyphenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1c** (19.8 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2f** (14.0 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 2:98) to give the product (20.3 mg, 63% yield) as a colorless oil. R_f = 0.16 (EtOAc:hexanes = 2:98); ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, *J* = 8.5 Hz, 1H), 7.85 (d, *J* = 7.5 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 1H), 7.45 – 7.32 (m, 3H), 7.30 – 7.26 (m, 2H),

7.24 – 7.18 (m, 1H), 7.11 (d, J = 7.5 Hz, 2H), 7.02 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 7.0 Hz, 1H), 6.82 (d, J = 9.0 Hz, 2H), 6.22 (s, 1H), 3.78 (s, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.3, 144.3, 140.4, 136.1, 134.1, 132.1, 130.8, 129.8, 128.9, 128.6, 127.7, 127.4, 126.5, 126.3, 125.6, 125.4, 124.6, 114.0, 55.4, 52.5 ppm; IR (thin film): 3058, 2931, 2834, 1609, 1509, 1248, 1178, 1032, 785, 731 cm⁻¹; HRMS calcd. for C₂₄H₂₀O⁺ 324.1514, observed 324.1520 [M]⁺.

3da - (4-tert-butylphenyl)(4-fluorophenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1d** (18.6 μ L, 0.12 mmol), NaN(SiMe₃)₂ (55.1 mg, 0.3 mmol), HMTETA (163.2 μ L, 0.6 mmol) and **2a** (17.3 μ L, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes) to give the product (30.3 mg, 99% yield) as a colorless oil. R_f = 0.33 (hexanes). The NMR spectral data match the previously published data.³

3db - (4-fluorophenyl)(4-fluorophenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1d** (18.6 µL, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 µL, 0.6 mmol) and **2b** (11.0 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes) to give the product (21.1 mg, 76% yield) as a colorless oil. $R_f = 0.33$ (hexanes); ¹H NMR (500 MHz, CDCl₃): δ 7.32 – 7.26 (m, 2H), 7.26 – 7.20 (m, 1H), 7.09 – 7.01 (m, 6H), 7.00 – 6.93 (m, 4H), 5.51 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.7 (d, *J* = 244 Hz), 143.7, 139.7 (d, *J* = 3 Hz), 131.0 (d, *J* = 8 Hz), 129.4, 128.7, 126.8, 115.4 (d, *J* = 21 Hz), 55.4 ppm; IR (thin film): 3029, 1603, 1508, 1224, 1157, 826, 700 cm⁻¹; HRMS calcd. for C₁₉H₁₄F₂⁺ 280.1064, observed 280.1059 [M]⁺.

3dd (= 3cb) - (4-methoxyphenyl)(4-fluorophenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1d** (55.8 μ L, 0.3 mmol), NaN(SiMe₃)₂ (54.9 mg, 0.3 mmol), 15-crown-5 (5.9 μ L, 0.03 mmol) and **2d** (12.5 μ L, 0.1 mmol) or **1c** (19.8 μ L, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 μ L, 0.6 mmol) and **2b** (11.0 μ L, 0.1 mmol). The

crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 2:98) to give the product (28.9 mg, 99% yield and 14.8 mg, 51% yield respectively) as a colorless oil. $R_f = 0.33$ (EtOAc:hexanes = 2:98); ¹H NMR (500 MHz, CDCl₃): δ 7.32 – 7.26 (m, 2H), 7.24 – 7.18 (m, 1H), 7.11 – 7.03 (m, 4H), 7.03 – 6.93 (m, 4H), 6.85 – 6.80 (m, 2H), 5.48 (s, 1H), 3.78 (s, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.6 (d, J = 243 Hz), 158.3, 144.3, 140.2 (d, J = 3 Hz), 136.1, 131.0 (d, J = 8 Hz), 130.5, 129.5, 128.6, 126.6, 115.3 (d, J = 21 Hz), 113.9, 55.45, 55.41 ppm; IR (thin film): 3028, 2836, 1606, 1506, 1248, 1034, 824, 700 cm⁻¹; HRMS calcd. for C₂₀H₁₆FO⁺ 291.1185, observed 291.1189 [M-H]⁺.

3de - (4-methoxyphenyl)(4-fluorophenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1d** (55.8 µL, 0.3 mmol), NaN(SiMe₃)₂ (54.9 mg, 0.3 mmol), 15-crown-5 (5.9 µL, 0.03 mmol) and **2e** (20.0 mg, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 2:98 to 5:95) to give the product (30.2 mg, 99% yield) as a colorless oil. $R_f = 0.33$ (EtOAc:hexanes = 5:95); ¹H NMR (500 MHz, CDCl₃): δ 7.30 – 7.24 (m, 2H), 7.22 – 7.16 (m, 1H), 7.12 – 7.04 (m, 4H), 6.97 – 6.91 (m, 4H), 6.69 – 6.64 (m, 2H), 5.43 (s, 1H), 2.91 (s, 6H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.5 (d, *J* = 243 Hz), 149.3, 144.7, 140.6 (d, *J* = 3 Hz), 131.9, 131.0 (d, *J* = 8 Hz), 130.1, 129.5, 128.5, 126.4, 115.1 (d, *J* = 21 Hz), 112.7, 55.3, 40.8 ppm; IR (thin film): 3026, 2883, 2800, 1614, 1520, 1506, 1350, 1222, 816, 701 cm⁻¹; HRMS calcd. for C₂₁H₂₀NF⁺ 305.1580, observed 305.1577 [M]⁺.

3df - (1-naphthyl)(4-fluorophenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1d** (18.6 µL, 0.12 mmol), LiN(SiMe₃)₂ (50.1 mg, 0.3 mmol), 12-crown-4 (97.1 µL, 0.6 mmol) and **2e** (14.0 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with hexanes to EtOAc:hexanes = 2:98) to give the product (27.4 mg, 88% yield) as a yellow oil. $R_f = 0.33$ (EtOAc:hexanes = 2:98); ¹H NMR (500 MHz, CDCl₃): δ 7.94 (d, J = 8.5 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.46 – 7.33 (m, 3H), 7.31 – 7.25 (m, 2H), 7.25 – 7.19 (m, 1H), 7.12 – 7.03 (m, 4H), 6.99 – 6.88 (m, 3H), 6.24 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.7 (d, J = 243 Hz), 143.8, 139.9, 139.6 (d, J = 3 Hz), 134.2, 132.0, 131.2 (d, J = 8 Hz), 129.8, 129.0, 128.7, 127.72, 127.68, 126.7, 126.4, 125.7, 125.4, 124.4, 115.4 (d, J = 21 Hz), 52.6 ppm; IR (thin film): 3059, 1600, 1506, 1223, 1158, 780, 733, 699 cm⁻¹; HRMS calcd. for C₂₃H₁₇F⁺ 312.1314, observed 312.1313 [M]⁺.

3dg- (4-cyanophenyl)(4-fluorophenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1d** (55.8 µL, 0.3 mmol), NaN(SiMe₃)₂ (55.1 mg, 0.3 mmol), 15-crown-5 (5.9 µL, 0.03 mmol) and **2g** (18.2 mg, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (7.5 mg, 26% yield) as a colorless oil. $R_f = 0.2$ (EtOAc:hexanes = 5:95); ¹H NMR (500 MHz, CDCl₃): δ 7.58 (d, J = 8.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.21 (d, J = 8.5 Hz, 2H), 7.08 – 6.96 (m, 6H), 5.56 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.9 (d, J = 245 Hz), 149.5, 142.4, 138.4 (d, J = 3 Hz), 132.5, 131.0 (d, J = 8 Hz), 130.3, 129.4, 128.9, 127.2, 119.0, 115.7 (d, J = 21 Hz), 110.7, 56.2 ppm; IR (thin film): 3030, 2228, 1607, 1507, 1224, 1159, 826, 738, 701 cm⁻¹; HRMS calcd. for C₂₀H₁₅NF⁺ 288.1189, observed 288.1194 [MH]⁺.

3di-(2-pyridyl)(4-fluorophenyl)phenylmethane

The reaction was performed following the General Procedure described above with **1d** (18.6 µL, 0.12 mmol), LiN(SiMe₃)₂ (50.2 mg, 0.3 mmol), 12-crown-4 (97.1 µL, 0.6 mmol) and **2i** (9.5 µL, 0.1 mmol). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95 to 1:9) to give the product (22.4 mg, 85% yield) as a colorless oil. $R_f = 0.45$ (EtOAc:hexanes = 2:8); ¹H NMR (500 MHz, CDCl₃): δ 8.62 – 8.56 (m, 1H), 7.60 (td, J = 7.8, 2.0 Hz, 1H), 7.30 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.16 – 7.10 (m, 5H), 7.07 (d, J = 8.0 Hz, 1H), 7.01 – 6.94 (m, 2H), 5.67 (s, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.2, 161.8 (d, J = 244 Hz), 149.8, 142.8, 138.7 (d, J = 3 Hz), 136.7, 131.0 (d, J = 8 Hz), 129.5, 128.7, 126.9, 123.9, 121.7, 115.4 (d, J = 21 Hz), 58.7 ppm; IR (thin film): 3060, 2895, 1587, 1507, 1432, 1222, 1158, 1098, 817, 748, 699 cm⁻¹; HRMS calcd. for C₁₈H₁₅NF⁺ 264.1189, observed 264.1183 [MH]⁺.

High-throughput Experimentation Screenings.

General Experimental:

Set up:

Experiments were set up inside a glovebox under a nitrogen atmosphere. A 96-well aluminum block containing 1 mL glass vials was predosed with Pd(OAc)₂ (0.5 μ mol) and NiXantphos (1 μ mol) in THF. The solvent was removed to dryness using a J-Kem blow down block and the corresponding base (30 μ mol) and additive (60 μ mol for 12-crown-4, HMTETA and dilgyme and 3 μ mol for 15-crown-5) in THF were added to the ligand/catalyst mixture. The solvent was removed on the J-Kem blow down block and a parylene stir bar was then added to each reaction vial. The aryl bromide (10 μ mol/reaction), diarylmethane (30 μ mol/reaction when using NaN(SiMe₃)₂/15-crown-5 and 12 μ mol/reaction for all other cases) and biphenyl (1 μ mol/reaction) (used as an internal standard to measure HPLC yields) were then dosed together into each reaction vial as a solution in CPME (100 μ L, 0.1 M). The 96-well plate was then sealed and stirred for 18 h at rt.

Work up:

Upon opening the plate to air, 500 μ L of acetonitrile was added into each vial. The plate was covered again and the vials stirred for 10 min. to ensure good homogenization. Into a separate 96-well LC block was added 700 μ L of acetonitrile, followed by 40 μ L of the diluted reaction mixtures. The LC block was then sealed with a silicon-rubber storage mat and mounted on an automated HPLC instrument for analysis.

(1) Additive and Base Screening:

Bases: KN(SiMe₃)₂, LiN(SiMe₃)₂, NaN(SiMe₃)₂, KOtBu, LiOtBu, NaOtBu.

Additives: 12-crown-4, 15-crown-5, 18-crown-6, NEt₃, TMEDA, N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), N,N'-diisopropylethylenediamine, N,N-diethylethylenediamine, N,N'-dibenzylethylenediamine (DBED), N,N,N',N''-pentamethyldiethylenetriamine (PMDTA), 2,2'-bipyridine (bipy), 1,10-phenanthroline and 1,4-diazabicyclo[2.2.2]octane (DABCO).

A J J!4!	Bases (AY % 3aa)						
Additives	KN(SiMe ₃) ₂	LiN(SiMe ₃) ₂	NaN(SiMe ₃) ₂	KOtBu	LiOtBu	NaOtBu	
Control	95	0	0	0	0	0	
crown ether	25	97	91	0	0	5	
NEt ₃	80	0	0	0	0	0	
TMEDA	89	6	10	0	0	2	
TMPDA	79	0	0	0	0	0	
N,N'-	40	2	10	0	0	3	
diisopropylethylenediamine							
N,N-	0	0	0	0	0	0	
diethylethylenediamine							
DBED	0	0	0	0	0	0	
PMDTA	68	8	12	0	0	5	
Bipy	70	0	0	0	0	0	
1,10-phenanthroline	71	0	0	0	0	0	
DABCO	71	0	0	0	0	0	

The lead hits from the screening were $LiN(SiMe_3)_2/12$ -crown-4 giving 97% assay yield **3aa**, $NaN(SiMe_3)_2/15$ -crown-5 rendering product in 91% assay yield and $NaN(SiMe_3)_2/TMEDA$, $NaN(SiMe_3)_2/N,N'$ -diisopropylethylenediamine and $NaN(SiMe_3)_2/PMDTA$ generating the triarylmethane compound in 10-12% assay yield.

(2) Additive Loading and Temperature Screening

Bases: LiN(SiMe₃)₂, NaN(SiMe₃)₂.

Additives/Additives loading: 12-crown-4, 15-crown-5, TMEDA, *N*,*N*'-diisopropylethylenediamine and PMDTA using 1, 2, 3, 6 and 8 equiv.

Base	Additive, loading	T (°C)	AY (%) 3aa
	15-crown-5 6 equiv	23	91
	15-crown-5 1 equiv	23	68
	<i>N</i> , <i>N</i> '-diisopropylethylenediamine 6 equiv	23	2
		110	15
	<i>N</i> , <i>N</i> '-diisopropylethylenediamine 2 equiv	23	2
		110	11
	TMEDA 8 equiv	23	5
		110	24
	TMEDA 6 equiv	23	7
$NaN(S1Me_3)_2$		110	32
	TMEDA 3 equiv	23	4

		110	28
	TMEDA 2 equiv	23	3
		110	27
	TMEDA 1 equiv	23	2
		110	27
	PMDTA 6 equiv	23	4
		110	31
	PMDTA 3 equiv	23	9
		110	32
	PMDTA 1 equiv	23	3
		110	45
LiN(SiMe ₃) ₂	12-crown-4 6 equiv	23	97
	12-crown-4 1 equiv	23	79

Conclusions from the screening: loading of the crown ethers could be reduced from 6 equiv to 1 equiv without a dramatic impact in the reaction yield at rt although yields obtained were lower. PMDTA was more promising than TMEDA and N,N'-diisopropylethylenediamine at 110 °C. 1 equiv PMDTA rendered **3aa** in 45% assay yield while 6 equiv TMEDA generated the product in 32% assay yield.

(3) Tetramine Loading and Temperature Screening

Tetramines: HMTETA (30 mol %, 1 equiv, 3 equiv and 6 equiv).

Base	Additive, loading	T (°C)	1a loading	AY (%) 3aa
		23	1.2 equiv	80
	HMTETA 6 equiv	110	1.2 equiv	73
		23	3 equiv	97
NaN(SiMe ₃) ₂		110	1.2 equiv	83
	HMTETA 3 equiv	23	1.2 equiv	23
		110	1.2 equiv	73
	HMTETA 1 equiv	23	3 equiv	15
	HMTETA 30 mol%	23	3 equiv	4

The lead hit from the screening was the combination of $NaN(SiMe_3)_2/6$ equiv HMTETA at rt affording 80% assay yield of the desired DCCP product **3aa** when 1.2 equiv **1a** were used and 97% assay yield when 3 equiv **1a** were used.

(4) Base, Solvent, Temperature and Additive loading Screening

Base: KN(SiMe₃)₂, LiN(SiMe₃)₂, NaN(SiMe₃)₂, KOtBu, LiOtBu, NaOtBu.

Solvent: CPME, DME, diglyme.

Temperature: rt, 50 °C, 110 °C.

Additives: 12-crown-4, 15-crown-5, 18-crown-6, TMEDA, PMDTA, HMTETA, diglyme.

NaN(SiMe₃)₂

No additive:

Base	Solvent	T (°C)	AY (%) 3aa
		23	NR
	CPME	50	NR
NaN(SiMe ₃) ₂		110	35
	DME	23	40
		110	70
	diglyme	23	54
		110	92

Although diglyme as coordinating solvent rendered good results at high temperature, diglyme's toxicity and high boiling point made us consider its role as an additive.

In the presence of additives:

15-crown-5 in CPME:

	Loading (equiv)	T (°C)	1a loading (equiv)	AY (%) 3aa
	6 equiv	23	1.2	91
		23	1.2	68
	1 equiv	23	3	79
		110	1.2	83
		110	3	87
		23	1.2	54
	0.03 equiv	23	3	102
$NaN(S1Me_3)_2$		50	1.2	90
		110	3	74
	0.015 equiv	23	1.2	41
		23	3	54
		50	1.2	74
		110	3	79
		23	1.2	NR
	0.003 equiv	23	3	3
		50	1.2	17
		110	3	67

Best hit: NaN(SiMe₃)₂/0.03 equiv 15-crown-5, 3 equiv **1a** in CPME at rt generated the desired product in quantitative assay yield.

HMTETA in different solvents:

Base	Loading (equiv)	Solvent	T (°C)	1a loading	AY (%) 3aa
				(equiv)	
		CPME	23	1.2	80
	6 equiv		23	3	97
		diglyme	23	1.2	56
$NaN(SiMe_3)_2$		CPME	23	1.2	23
	3 equiv		50	1.2	76
		DME	23	1.2	42
	1 equiv	CPME	23	3	15
			23	3	4
	0.03 equiv	CPME	110	1.2	65

Best hit: $NaN(SiMe_3)_2/6$ equiv HMTETA, 1.2 equiv **1a** in CPME at rt generated the desired product in 80% assay yield.

Diglyme in CPME:

Base	Loading (equiv)	T (°C)	1a loading	AY (%) 3aa
			(equiv)	
	6 equiv	23	1.2	88
		23	3	97
	3 equiv	23	1.2	41
NaN(SiMe ₃) ₂		50	1.2	89
	1 equiv	23	3	40
	0.03 equiv	23	3	6
		110	1.2	41

Best hit: $NaN(SiMe_3)_2/6$ equiv diglyme, 1.2 equiv **1a** in CPME at rt generated the desired product in 88% assay yield.

LiN(SiMe₃)₂

Additive, loading	Solvent	T (°C)	1a loading (equiv)	AY (%) 3aa
-		23	1.2	NR
-		50	1.2	NR
-	CPME	50	3	NR
12-crown-4 6 equiv		23	1.2	97
12-crown-4 1 equiv		23	1.2	79
		50	1.2	78
HMTETA 6 equiv	CPME	23	1.2	33

Best hit: $LiN(SiMe_3)_2/6$ equiv 12-crown-4, 1.2 equiv **1a** in CPME at rt generated the desired product in 97% assay yield.

Other bases:

Base	Additive, loading	Solvent	T (°C)	1a loading	AY (%) 3aa
				(equiv)	
	-	CPME	23	1.2	NR
	-	diglyme	23	1.2	10
	-	DME	110	3	11
	18-crown-6 6 equiv	CPME	23	1.2	NR
	18-crown-6 2equiv		50	1.2	5
			50	3	9
	18-crown-6 0.03 equiv	DME	50	1.2	6
WO D			50	3	13
KO <i>t</i> Bu	18-crown-6 0.003 equiv		50	1.2	5
			50	3	11
	TMEDA 3 equiv		110	3	9
	TMEDA 1 equiv]	110	3	14
	TMEDA 0.03 equiv	CPME	110	3	16
	PMDTA 3 equiv		110	3	13
	PMDTA 1 equiv		110	3	14
	PMDTA 0.03 equiv		110	3	20
	HMTETA 6 equiv	diglyme	23	1.2	15
	-	CPME	23	1.2	NR
LiOtBu	-	diglyme	23	1.2	NR
	12-crown-4 6 equiv	CPME	23	1.2	NR
	-	CPME	23	1.2	NR
NaOtBu	-	diglyme	23	1.2	NR
	15-crown-5 6 equiv	CPME	23	1.2	NR
		CPME	110	1.2	12

(5) Substrate Scope Screening

Well	Substrates	Base	Additive, loading	Prod/IS ^a	Prod/IS ^a
			_		(KN(SiMe ₃) ₂)
A01		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	5.28 (95%) ^b	
A07	1a/2a	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	6.14 (99%) ^b	6.36
E01		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	5.13 (86) ^b	
E07		NaN(SiMe ₃) ₂	diglyme, 6 equiv	4.77 (78) ^b	
A02		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	0.47	
A08	1a/2b	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	3.96 (63%) ^b	4.08
E02		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	1.86	
E08		NaN(SiMe ₃) ₂	diglyme, 6 equiv	0.86	
A03		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	0.31	
A09	1a/2c	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	0.37	3.22
E03		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	0	
E09		NaN(SiMe ₃) ₂	diglyme, 6 equiv	0.18	
A04		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	6.90 (99%) ^b	
A10	1a/2d	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	7.65 (97%) ^b	7.90
E04		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	0.12	
E10		NaN(SiMe ₃) ₂	diglyme, 6 equiv	1.85	
A05		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	6.52	
A11	1a/2e	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	9.96 (99%) ^b	10.51
E05		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	0.18	
E11		NaN(SiMe ₃) ₂	diglyme, 6 equiv	2.08	
A06		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	0.74	
A12	1a/2f	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	$7.77(77\%)^{b}$	7.97
E06]	NaN(SiMe ₃) ₂	HMTETA, 6 equiv	4.34]
E12		NaN(SiMe ₃) ₂	diglyme, 6 equiv	1.65	

B01		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	5.46 (52%) ^b	
B07	1c/2a	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	2.68	7.78
F01		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	0.68	
F07		NaN(SiMe ₃) ₂	diglyme, 6 equiv	0.07	
B02		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	3.51 (51%) ^b	
B08	1c/2b	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	0.90	1.25 (17%) ^c
F02		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	0.18	
F08		NaN(SiMe ₃) ₂	diglyme, 6 equiv	0	
B03		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	0	
B09	1c/2c	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	0	0
F03		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	0	
F09		NaN(SiMe ₃) ₂	diglyme, 6 equiv	0	
B04		$LiN(SiMe_3)_2$	12-crown-4, 6 equiv	5.20 (48%) ^b	
B10	1c/2d	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	2.64	7.02
F04		$NaN(SiMe_3)_2$	HMTETA, 6 equiv	0.55	
F10		$NaN(SiMe_3)_2$	diglyme, 6 equiv	0.24	
B05		$LiN(SiMe_3)_2$	12-crown-4, 6 equiv	5.27 (52%) ^b	
B11	1c/2e	$NaN(SiMe_3)_2$	15-crown-5, 0.03 equiv	3.01	8.57
F05		$NaN(SiMe_3)_2$	HMTETA, 6 equiv	0	
F11		$NaN(SiMe_3)_2$	diglyme, 6 equiv	0.42	
B06		$\text{LiN}(\text{SiMe}_3)_2$	12-crown-4, 6 equiv	$6.00(63\%)^{6}$	
B12	1c/2f	$NaN(SiMe_3)_2$	15-crown-5, 0.03 equiv	2.71	8.41
F06		$NaN(SiMe_3)_2$	HMTETA, 6 equiv	0	
F12		$NaN(SiMe_3)_2$	diglyme, 6 equiv	0.15	
<u>C01</u>	11/2	$LiN(SiMe_3)_2$	12-crown-4, 6 equiv	3.66	6.60
C07	1d/2a	$NaN(SiMe_3)_2$	15-crown-5, 0.03 equiv	0.35	6.68
G01		$NaN(SiMe_3)_2$	HMTETA, 6 equiv	4.46 (99%)	
G07		$NaN(SiMe_3)_2$	diglyme, 6 equiv	2.98	
C02	1.1/01	$LiN(SiMe_3)_2$	12-crown-4, 6 equiv	5.63 (76%)*	$2.26(500)^{\circ}$
C08	10/20	$NaN(SiMe_3)_2$	15-crown-5, 0.03 equiv	3.33	3.30 (30%)
G02		$NaN(SiMe_3)_2$	dialuma 6 aquiv	3.30	
G08		I = I = I = I = I = I = I = I = I = I =	12 grown 4 6 ggwiy	0.10	
C03	1d/2c	$\operatorname{Lin}(\operatorname{Sivie}_3)_2$ NaN(SiMa)	12-c10wii-4, 0 equiv	0	0
C09	1u/2c	$NaN(SiMe_3)_2$	HMTETA 6 equiv	0	0
		$NaN(SiMe_3)_2$	diglyme 6 equiv	0	
G03		$I i N(SiMe_3)_2$	12-crown-4 6 equiv	7.67	
C10	1d/2d	$NaN(SiMe_3)_2$	12-crown-5, 0,03 equiv	7.66 (99%) ^b	7 99
G04	10/20	$NaN(SiMe_3)_2$	HMTETA 6 equiv	4 41	1.99
G10		$NaN(SiMe_3)_2$	diglyme 6 equiv	3.13	
C05		$LiN(SiMe_2)_2$	12-crown-4 6 equiv	0	
C11	1d/2e	$NaN(SiMe_3)_2$	15-crown-5, 0.03 equiv	10.01 (99%) ^b	10.46
G05		$NaN(SiMe_3)_2$	HMTETA. 6 equiv	7.63	
G11		$NaN(SiMe_3)_2$	diglyme, 6 equiv	2.90	
C06		$LiN(SiMe_3)_2$	12-crown-4. 6 equiv	7.73 (88%) ^b	
C12	1d/2f	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	8.70	8.91
G06		$NaN(SiMe_3)_2$	HMTETA. 6 equiv	5.95	
G12		NaN(SiMe ₃) ₂	diglyme, 6 equiv	3.35	
D01		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	6.23	
D07	1b/2a	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	1.68	6.45
H01	1	NaN(SiMe ₃) ₂	HMTETA, 6 equiv	2.39	
H07	1	NaN(SiMe ₃) ₂	diglyme, 6 equiv	6.13 (99%) ^b	
D02		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	4.32	
D08	1b/2b	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	4.57 (99%) ^b	$1.46(68\%)^{c}$
H02]	NaN(SiMe ₃) ₂	HMTETA, 6 equiv	1.79	
H08	L	$NaN(SiMe_3)_2$	diglyme, 6 equiv	4.96	
D03		$LiN(SiMe_3)_2$	12-crown-4, 6 equiv	multiple	

	1b/2c			products	$1.17(0\%)^{c}$
		NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	4.50 (multiple	
D09				products) ^b	
		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	multiple	
H03				products	
		NaN(SiMe ₃) ₂	diglyme, 6 equiv	multiple	
H09				products	
D04		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	6.21	
D10	1b/2d	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	7.56 (116%) ^b	5.91 (quant.) ^c
H04		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	6.04	
H10		NaN(SiMe ₃) ₂	diglyme, 6 equiv	1.11	
D05		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	0.77	
D11	1b/2e	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	7.27 (110%) ^b	5.95 (quant.) ^c
H05		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	7.13	
H11		NaN(SiMe ₃) ₂	diglyme, 6 equiv	7.10	
D06		LiN(SiMe ₃) ₂	12-crown-4, 6 equiv	0	
D12	1b/2f	NaN(SiMe ₃) ₂	15-crown-5, 0.03 equiv	$7.44(99\%)^{b}$	7.87
H06		NaN(SiMe ₃) ₂	HMTETA, 6 equiv	2.72	
H12		NaN(SiMe ₃) ₂	diglyme, 6 equiv	0	

^aRatio product/internal standard obtained by high-throughput screening; ^bisolated yield on laboratory scale (0.1 mmol); ^cyield determined by ¹H NMR spectroscopy of the crude reaction mixture on laboratory scale.

Representative 96 well plate for screening (5).

LiN(SiMe₃)₂, 6 equiv 12-crown-4, CPME, rt

NaN(SiMe₃)₂, 30 mol % 15-crown-5, CPME, rt

		2a	2b	2c	2d	2e	2f	2a	2b	2c	2d	2e	2f
		^t Bu Br	F Br	CF ₃ Br	O Br	N Br	Br	^t Bu Br	F Br	CF ₃ Br	O-	N Br	Br
		1	2	3	4	5	6	7	8	9	10	11	12
	A	87 (97)	6	25	106 (99)	66	9	96 (99)	54 (63)	18	118 (97)	105 (99)	91 (77)
		3 aa	3ab	3ac	3ad	3ae	3af	<u>3aa</u>	3ab	3ac	3ad	3ae	3af
1c	B	61 (52)	39 (51)	mult. prod.	59 (48)	48 (61)	55 (63)	30	10	mult. prods.	30	27	25
		3ca	3cb	<u>3cc</u>	3cd	3ce	3cf	3ca	3cb	3cc	3cd	3ce	3cf
	С	60	(76)	12	101	0	82 (88)	6	44	8	101 (99)	109 (99)	103
ld		3da	3db	3dc	3dd	3de	3df	3da	3db	3dc	3dd	3de	3df
	D	82	76	81 (78)	92	10	0	26	73 (99)	21	112 (99)	99 (94)	73 (99)
10		3ba	3bb	3bc	3bd	3be	3bf	3ba	3bb	3bc	3bd	3be	3bf
	E	80 (86)	25	4	2	2	36	88 (78)	12	0	28	23	19
18		3aa	3ab	3ac	3ad	3ae	3af	3aa	3ab	3ac	3ad	3ae	3af
1c	F	8 3ca	2 3cb	0 3cc	6 3cd	0 3ce	0 3cf	1 3ca	0 3cb	0 3cc	3 3cd	4 3ce	1 3cf
F	G	73 (99)	47	0	58	83	56	49	2	0	41	32	32
1d		3da	3db	3dc	3dd	3de	3df	3da	3db	3dc	3dd	3de	3df
	H	37	31	19	66	83	27	95 (99)	87	mult. prods.	16	97	0
lb		3ba	3bb	3bc	3bd	3be	3bf	3ba	3bb	3bc	3bd	3be	3bf

NaN(SiMe₃)₂, 6 equiv HMTETA, CPME, rt

NaN(SiMe₃)₂, 6 equiv diglyme, CPME, rt

Numbers in black correspond to yield based on ¹H NMR of the crude mixture; numbers in blue correspond to HPLC calibrated yields from ¹H NMR; numbers in brackets correspond to isolated yields on laboratory scale.

Well	Condition	Substrate	Prod/IS ^a
A01		2g	4.18 (67%) ^b
A02		2h	0
A03	LiN(SiMe ₃) ₂ /12-crown-4, 6 equiv	2i	3.35 (75%) ^b
A04		2.j	0
A05		2k	0
A06		21	0
B01		2g	2.45 (34%) ^b
B02		2h	0
B03	NaN(SiMe ₃) ₂ /15-crown-5, 0.03 equiv	2i	1.16 (37%) ^b
B04		2j	0
B05		2k	0
B06		21	0
C01		2g	0
C02		2h	0
C03	NaN(SiMe ₃) ₂ /HMTETA, 6 equiv	2i	0.71
C04		2j	0
C05		2k	0
C06		21	0
D01		2g	0
D02		2h	0
D03	NaN(SiMe ₃) ₂ /diglyme, 6 equiv	2i	0.74
D04		2ј	0
D05		2k	0
D06		21	0
		2g	$1.15(16\%)^{b}$
		2h	0
Control	$KN(SiMe_3)_2$	2i	0
		2j	0
		2k	0
		21	0

(6) Challenging Ar-Br Screening with 1a

^aRatio product/internal standard obtained by high-throughput screening; ^bisolated yield on laboratory scale.

(7) Screening of compounds 2g and 2i with diarylmethanes 1b-1d

		2	g	2	2i	
	Ar-Br		CN Br	N Br		
Diarylmethanes	Conditions	Prod/IS ^a	$AY (\%)^{b}$	Prod/IS ^a	AY (%) ^b	
	LiN(SiMe ₃) ₂ , 6 equiv 12-C-4	4.86	92 (86)	3.76	95	
	NaN(SiMe ₃) ₂ , 30 mol % 15-C-5	4.38	83	3.58	83	
	NaN(SiMe ₃) ₂ , 6 equiv HMTETA	4.03	69	4.29	107 (96)	
	NaN(SiMe ₃) ₂ , 6 equiv diglyme	3.68	54	1.69	44	
1b	CONTROL - KN(SiMe ₃) ₂	2.88	20	2.80	74	
	Product	31	og	3bi		
	LiN(SiMe ₃) ₂ , 6 equiv 12-C-4	0.88	0	0.67	<6	
	NaN(SiMe ₃) ₂ , 30 mol % 15-C-5	0.86	0	0.64	0	
	NaN(SiMe ₃) ₂ , 6 equiv HMTETA	NR ^c	0	NR ^c	0	
OMe 10	NaN(SiMe ₃) ₂ , 6 equiv diglyme	NR ^c	0	NR ^c	0	
10	CONTROL - KN(SiMe ₃) ₂	2.35	0	0.29	0	
	Product	3cg		3ci		
	LiN(SiMe ₃) ₂ , 6 equiv 12-C-4	0	0	3.07	83 (85)	
~ ~ ~	NaN(SiMe ₃) ₂ , 30 mol % 15-C-5	4.48	18 (26)	0.78	60	
Diarylmethanes LiN Diarylmethanes LiN NaN(NaN(NaN(NaN(1b CO 1b CO 1c LiN NaN(NaN(1c LiN 1d CO	$NaN(SiMe_3)_2$, 6 equiv HMTETA	0.74	3	0.23	0	
→ ~ `F	$NaN(SiMe_3)_2$, 6 equiv diglyme	NR ^c	0	3ci 0 3.07 83 18 (26) 0.78 0 3 0.23 0 14 0.23 0	0	
1d	CONTROL - KN(SiMe ₃) ₂	3.82	14	0.23	0	
14	Product	30	lg	3di		

^aRatio product/internal standard obtained by high-throughput screening; ^bresults correspond to assay yields based on ¹H NMR of the crude mixture in the high-throughput screening. Control results correspond to ¹H NMR yields from the crude mixture on laboratory scale. Numbers in brackets correspond to isolated yields on laboratory scale; ^cNR = no reaction, starting material unreacted.

(8) Screening of compounds 2c with diarylmethanes 1a-1d using 2 equivalents of base and 3 equivalents of diarylmethane

		2c			
	Ar-Br	CF ₃			
		Br			
Diarylmethanes	Conditions	Prod/IS ^a AY (%			
	$LiN(SiMe_3)_2$, 6 equiv 12-C-4	2.85	25		
	NaN(SiMe ₃) ₂ , 30 mol % 15-C-5	2.10	18		
	NaN(SiMe ₃) ₂ , 6 equiv HMTETA	0.50	4		
	NaN(SiMe ₃) ₂ , 6 equiv diglyme	NR	0		
10	CONTROL - KN(SiMe ₃) ₂	6.90	66		
Ia	Product	3ac			
	$LiN(SiMe_3)_2$, 6 equiv 12-C-4	5.06	81 (78)		
	NaN(SiMe ₃) ₂ , 30 mol % 15-C-5	1.29	21		
	NaN(SiMe ₃) ₂ , 6 equiv HMTETA	1.24	19		
	NaN(SiMe ₃) ₂ , 6 equiv diglyme	multiple	с		
1h		products	-		
10	CONTROL - KN(SiMe ₃) ₂	NR	<5		
	Product	31	bc		
	LiN(SiMe ₃) ₂ , 6 equiv 12-C-4	multiple	с		
		products	-		
	NaN(SiMe ₃) ₂ , 30 mol % 15-C-5	multiple	с		
OMe		products	-		
lc	NaN(SiMe ₃) ₂ , 6 equiv HMTETA	NR^{d}	_ ^c		
	NaN(SiMe ₃) ₂ , 6 equiv diglyme	NR^{d}	_ ^c		
	CONTROL - KN(SiMe ₃) ₂	multiple	с		
		products	-		
	Product	3cc			
	LiN(SiMe ₃) ₂ , 6 equiv 12-C-4	1.24	12		
	NaN(SiMe ₃) ₂ , 30 mol % 15-C-5	0.85	8		
	NaN(SiMe ₃) ₂ , 6 equiv HMTETA	NR ^d	0		
F	NaN(SiMe ₃) ₂ , 6 equiv diglyme	NR ^d	0		
1.1	CONTROL - KN(SiMe ₃) ₂	2.84	40		
10	Product	3dc			

^aRatio product/internal standard obtained by high-throughput screening; ^bresults correspond o assay yields based on ¹H NMR of the crude mixture in the high-throughput screening. Control results correspond to ¹H NMR yields from the crude mixture on laboratory scale. Numbers in brackets correspond to isolated yields on laboratory scale; ^cnot determined; ^dNR = no reaction, starting material unreacted.

References.

- 1. T. C. Fessard, H. Motoyoshi and E. M. Carreira, Angew. Chem. Int. Ed., 2007, 46, 2078.
- 2. J. J. Eisch, C. A. Kovacs, P. Chobe and M. P. Boleslawski, J. Org. Chem., 1987, 52, 4427.
- 3. J. Zhang, A. Bellomo, A. D. Creamer, S. D. Dreher and P. J. Walsh, J. Am. Chem. Soc., 2012, 134, 13765.
- 4. G. K. S. Prakash, C. Panja, A. Shakhmin, E. Shah, T. Mathew and G. A. Olah, J. Org. Chem., 2009, 74, 8659.
- 5. G. Song, Y. Su, X. Gong, K. Han and X. Li, Organic Lett., 2011, 13, 1968.
- 6. S. Duez, A. K. Steib, S. M. Manolikakes and P. Knochel, Angew. Chem. Int. Ed., 2011, 50, 7686.
- 7. T. Niwa, H. Yorimitsu and K. Oshima, Organic Lett., 2007, 9, 2373.
- 8. C. R. Liu, M. B. Li, C. F. Yang and S. K. Tian, Chem. Commun., 2008, 1249.

NMR Spectra.

1,1,2-triphenylethane

2-(1,2-diphenylethyl)pyridine

$3aa-(4\mbox{-}tert\mbox{-}butylphenyl) diphenylmethane$

3ab – (**4-fluorophenyl**)diphenylmethane

${\bf 3ad-(4-methoxyphenyl)} diphenyl methane$

3ae – (*N*,*N*-dimethylaminophenyl)diphenylmethane

120 110 100 f1 (ppm) 210 200 190 170 <u>16</u>0

3af - (1-naphthyl)diphenylmethane

3ag – (**4**-cyanophenyl)diphenylmethane

 $3ba-(4\mbox{-}tert\mbox{-}butylphenyl)(2\mbox{-}pyridyl)phenylmethane$

 ${\bf 3bb-(4-fluorophenyl)(2-pyridyl) phenylmethane}$

3bc-(4-trifluoromethylphenyl) (2-pyridyl) phenylmethane

 $3be-(4\text{-}N,\!N\text{-}dimethylaminophenyl)(2\text{-}pyridyl) phenylmethane$

120 110 100 f1 (ppm) 210 200 170 160

3bf-(1-naphthyl)(2-pyridyl) phenylmethane

120 110 100 f1 (ppm) 210 200 190 170 160

3bg – (**4-cyanophenyl**)(**2-pyridyl**)**phenylmethane**

3bi - 2,2'-(phenylmethylene)dipyridine

 ${\bf 3ca-(4-} tert-butylphenyl)(4-methoxyphenyl)phenylmethane$

$\label{eq:constraint} 3cd-(4-methoxyphenyl)(4-methoxyphenyl)phenylmethane$

120 110 100 f1 (ppm) 210 200 190 170 160

120 110 100 f1 (ppm) 210 200 170 160

3 cf-(1-naphthyl) (4-methoxyphenyl) phenyl methane

3da - (4-tert-butylphenyl)(4-fluorophenyl)phenylmethane

S47

 ${\bf 3db-(4-fluorophenyl)(4-fluorophenyl)phenylmethane}$

3dd (= **3cb**) – (**4-methoxyphenyl**)(**4-fluorophenyl**)phenylmethane

3de-(4-methoxy phenyl) (4-fluor ophenyl) phenyl methane

3df-(1-naphthyl)(4-fluorophenyl) phenylmethane

3dg- (4-cyanophenyl)(4-fluorophenyl)phenylmethane

 $3di-(2\mbox{-}pyridyl)(4\mbox{-}fluorophenyl) phenyl methane$

