Cleavage of Oxygen-Sulfur Double Bond and Carbon-Sulfur Bond: Unnatural Highly Selective Electrophilic Addition of Allenylic Sulfoxides

Minyan Wang, Chunling Fu, and Shengming Ma*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry,

Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China

Fax: (+86) 21-62609305;

E-mail: masm@mail.sioc.ac.cn

Supporting Information

Table of Conents

General Information	S3
The Known Methods for the Synthesis of Enones or Enals	S3-S4
The Known Methods for the Synthesis of α -Iodoallylic Alcohols	S4-S6
Supplementary Table S1-S4	S7-S9
Preparation of Starting 1,2-Allenylic Sulfoxides 1c, 1d, and 1l	S9-S12
Preparation of Starting 1,2-Allenylic Sulfoxides 1e, 1f, and 1g	S12-S15
The Reaction of 1,2-Allenylic Sulfoxide 1a Affording <i>E</i> - 2a	S15-S16
Preparation of Z-1-Iodo-1-alkenyl Ketones Z-3a-Z-3f	S16-S21
Preparation of 2-Iodo-2-enals with the Same Substituents at the 3-Position	S22-S24
3h-3k	
Preparation of Z-2-Iodo-2-enals Z-3I-Z-30	S24-S27
Preparation of <i>E</i> -2-Iodo-3-phenyl-2-enals <i>E</i> - 3p - <i>E</i> - 3q	S27-S29
The Reaction of 3 with 2,4- Dinitrophenylhydrazine Affording 4	S29-S31
The Synthetic Application of the Z-3a Affording 5-6	S31-S33
Experiments for Mechanistic Study	S33-S43
References	S43-S46
¹ H/ ¹³ C NMR Spectra of These Compounds	S47-S131

General Information:

Anhydrous CHCl₃ was dried over P_2O_5 under reflux for 5 hours and distilled before use. Commercial anhydrous EtOH was used. Et₃N was dried over KOH and distilled freshly before use. CH₂Cl₂ was dried over CaH₂ under reflux for 3 hours and distilled before use. THF was dried over sodium wire with benzophenone as indicator and distilled freshly before use. The petroleum ether (30-60 °C) for chromatography was distilled before use. Other reagents were used without further treatment.

The known methods for the synthesis of enones or enals:

Transition metal-catalyzed hydroacylation of alkynes with aldehydes or alcohols usually affords E/Z mixtures of α,β -enones together with an issue of regioselectivity referring to the alkynes.¹⁻⁴ When Lewis acids were used in such transformations, E/Z > 99/1 can be achieved only when the group of R¹ is larger than the R^{2.5} In addition, these methodologies are limited to incorporate substituents into the β position of the enones or enals. The Witting reaction between ylides and aldehydes afforded Z/E mixtures.⁶⁻⁷ When R² = quinolyl and R³ = H, the reaction could afford the enals with the ratio of E/Z up to 99/1.⁶ Isomerization of propargylic alcohols catalyzed by Ag, Au, and Ru complexes could also afford enones.⁸⁻¹⁰ However, poor E/Z ratio were observed and these methodologies cannot incorporate substituents into the α positions. The aldol addition between ketones and aldehydes is an efficient approach to α,β -unsaturated ketones, however, this methodology cannot be used

$R^{1} = R^{2} + \binom{O}{R^{3}} H \text{or} R^{3} \cap OH \underbrace{\frac{\text{catalysis}}{(\text{refs. 1-5})}}_{R^{3}} \binom{O}{R^{3}} \binom{R^{2}}{R^{1}}$						
Catalyst	R ¹	R^2	R ³	E/Z	Regioselectivity	ref.
Ni (0)-PR ₃	aryl, alkyl	aryl, alkyl	aryl, alkyl	44/56 ~ 95/5	>40/60	1
Rh	alkyl	alkyl	2-hydroxyphenyl	only E isomer		2a
	aryl, alkyl	Н	aryl, alkyl		only branched enon	es 2a-b
Ru	CH ₃	CH ₃	aryl, alkyl	>95/5		3
	CH_2CH_2OBn	CH ₃	<i>p</i> -BrPh	>95/5	5/1	3
Ir	aryl, alkyl	CH ₃	aryl, alkyl	16/84 ~ 86/14		4
	Ph	CH ₃	CH ₃	98/2		4
	CH ₃	СН ₃	Ph	9/91		4
Lewis acid	aryl	H, alkyl	aryl, alkyl	>15/1 ~ 99/1		5
$ \begin{array}{ll} {\sf R}^1 = {\sf aryl},{\sf R}^3 = {\sf H},{\it E/Z} = 84/16 \sim 92/8 & {\sf ref.\ 6} \\ {\sf only\ when\ {\sf R}^1 = {\sf quinolyl},{\sf R}^3 = {\sf Ph},{\it E/Z} = 99/1; \\ {\sf R}^1 = {\sf Ph},{\sf R}^3 = {\sf CH}_3,{\it E/Z} = 98/2; \\ {\sf R}^1 = {\it m}{\sf -}{\sf BnOC}_6{\sf H}_4,{\sf R}^3 = {\sf CH}_3,{\it E/Z} = 95/5. \\ {\sf R}^1 = {\sf alkyl},{\sf R}^3 = {\sf H},{\it E/Z} = 1/1 \sim 93/7 & {\sf ref.\ 7a} \\ {\sf R}^1 = {\sf alkyl},{\sf R}^3 = {\sf alkyl},{\it E/Z} = 1/1 \sim 95/5 & {\sf refs.\ 7} \\ \end{array} $						
$R^{1} \xrightarrow{HO} R^{3} \xrightarrow{Ag, Au, Ru} R^{1} \xrightarrow{O} R^{3}$ $R^{2} \xrightarrow{(refs. 8-10)} R^{1} \xrightarrow{O} R^{3}$						
Ag: $E/Z = 46/54 \sim 79/21$ ref. 8 Au: $E/Z = 63/37 \sim 93/7$; refs. 9 only when R ¹ = C ₆ H ₁₃ - <i>n</i> , R ² = H, R ³ = Ph, $E/Z = 97/3$; R ¹ = Bu- <i>n</i> , R ² = CH ₃ , R ³ = Bu- <i>t</i> , $E/Z = 97/3$. Ru: $E/Z = 1/2 \sim 2/1$ refs. 10						
$R^{1} \xrightarrow{H} R^{2} \xrightarrow{R^{3}} R^{3} \xrightarrow{\text{Aldol addition}}_{(\text{refs. 11})} R^{1} \xrightarrow{R^{2}} R^{3} + R^{1} \xrightarrow{R^{3}} R^{2}$						

widely because of the regioselectivity arise from the unsymmetric ketones.¹¹

Figure 1. The known methods for the synthesis of enones or enals

The known methods for the synthesis of α -iodoallylic alcohols:

Supplementary Table S1-S4:

Table S1. Effect of H₂O or EtOH ^a

PhOS n-C ₄ H ₉	$= \begin{pmatrix} H \\ Et \end{pmatrix}^{H} + I_{2} + BnSH \frac{CHC}{30}$	$\begin{array}{c} \begin{array}{c} & O \\ H_{3}/H_{2}O \text{ or EtOH } n - C_{4}H_{9} \\ \hline \\ O \text{ min, 40 } ^{\circ}C \\ I \\ \hline \\ Z - 3a \end{array}$
entry	H ₂ O or EtOH	yield of <i>Z</i> - 3a (%) ^b
1	0	0
2	$27 \ \mu L \ H_2O \ (5.0 \ equiv)$	0
3	54 μ L H ₂ O (10.0 equiv)	2
4	270 μ L H ₂ O (50.0 equiv)	1
5	86 µL EtOH (5.0 equiv)	46
6	75 µL EtOH (4.4 equiv)	50
7	100 µL EtOH (5.9 equiv)	51
8	120 µL EtOH (7.1 equiv)	53
9	150 µL EtOH (8.9 equiv)	48
10	300 µL EtOH (17.7 equiv)	44
11 °	600 µL EtOH (35.5 equiv)	8

^a A solution of 1a (0.3 mmol), CHCl₃ (4 mL, dried under reflux over P₂O₅ for 5 hours and

distilled), and anhydrous EtOH or H₂O was treated with I₂ (0.45 mmol) for 5 min at 40 $^{\circ}$ C followed by the addition of a solution of BnSH in CHCl₃ (0.15 M, 2 mL, dried under reflux over P₂O₅ for 5 hours and distilled) with stirring. After being stirred for 30 min, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃ at 40 $^{\circ}$ C. ^b The yields were determined by ¹H NMR analysis with CH₂Br₂ as the internal standard. ^c 64% of *E*-2a was formed.

PhOS ♪ <i>n</i> -C₄H ₉	H Et 1a H 1.5 equiv	BnSH <u>CHCl₃/EtOH=50/1</u> 30 min, temp 1.0 equiv	$n - C_4 H_9 \longrightarrow H$ I Et Z-3a
	entry	temp (°C)	yield of Z- 3a (%) b
	1 °	10	7
	2 ^d	20	47
	3	30	48
	5	40	53
	6	50	47
	7	60	45

Table S2. Effect of temperature on the yield of Z-3a^a

^a A solution of **1a** (0.3 mmol), CHCl₃ (4 mL, dried under reflux over P_2O_5 for 5 hours and distilled), and EtOH (30 µL) was treated with I₂ (0.45 mmol) for 5 min followed by the addition of a solution of BnSH in CHCl₃ (0.15 M, 2 mL, dried under reflux over P_2O_5 for 5 hours and distilled) with stirring. After being stirred for 30 min, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃. ^b The yields were determined by ¹H NMR analysis with CH₂Br₂ as the internal standard. ^c 58% of *E*-**2a** was formed under this condition. ^d The reaction was complete in 45 min.

Table S3. Effect of the loading of I_2 on the reaction of nona-3,4-dien-5-ylphenyl sulfoxide 1a with I_2 in the BnSH ^a

PhOS n-C ₄ H ₉ 1a	$=$ H + I_2 Et	+ BnSH <u>CHCl₃/EtOl</u> time, 40 1.0 equiv	$\xrightarrow{H=50/1} n C_4 H_9 \xrightarrow{O} H$ $\xrightarrow{P} I Et$ $Z - 3a$
entry	I ₂ (equiv)	time (min)	yield of <i>Z</i> - 3a (%) ^b
1	1.0	30	28
2	2.0	30	62
3	2.5	15	70
4	3.0	15	76
5	3.5	15	81
6	4.0	15	80
7	5.0	15	80

^a A solution of **1a** (0.3 mmol), CHCl₃ (4 mL, dried under reflux over P_2O_5 for 5 hours and distilled), and anhydrous EtOH (30 µL) was treated with I_2 for 5 min at 40 °C followed by the addition of a solution of BnSH in CHCl₃ (0.15 M, 2 mL, dried under reflux over P_2O_5 for 5 hours and distilled) with stirring. After the reaction completed, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃ at 40 °C. ^b The yields were determined by ¹H NMR analysis with CH₂Br₂ as the internal standard.

Table S4. Concentration effect on the reaction of nona-3,4-dien-5-ylphenyl sulfoxide 1a with I₂ in the presence of BnSH ^a

PhOS n-C ₄ H ₉ 1a	$= \begin{pmatrix} H \\ + I_2 + \\ Et \\ 3.5 \text{ equiv } f$	BnSH <u>CHCl₃/EtO⊢</u> time, 40 1.0 equiv	$ \begin{array}{c} I = 50/1 \\ 0 \ ^{\circ}C \end{array} \xrightarrow{n-C_4H_9} \xrightarrow{O} \\ I \\ Z-3a \end{array} $
entry	c (mmol/mL)	time (min)	yield of <i>Z</i> - 3a (%) ^b
1	0.05	15	83
2 °	0.05	180	0
3	0.1	15	85
4	0.2	15	89 (82 ^d)
5 ^e	0.3	15	76

^a A solution of **1a** (0.3 mmol), CHCl₃ (dried under reflux over P_2O_5 for 5 hours and distilled), and anhydrous EtOH was treated with I₂ (1.05 mmol) for 5 min at 40 °C followed by the addition of a solution of BnSH (0.3 mmol) in CHCl₃ (dried under reflux over P_2O_5 for 5 hours and distilled) with stirring. After the reaction completed, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃ at 40 °C. ^b The yields were determined by ¹H NMR analysis with CH₂Br₂ as the internal standard. ^c The reaction was conducted in the absence of BnSH. ^d Isolated yield. ^e 0.6 mmol **1a** and 2 mL of CHCl₃ were used.

Preparation of Starting 1,2-Allenylic Sulfoxides 1c, 1d, and 1l

Synthesis of the starting materials: Compounds **1a-b**, **1h-o**, and **1q-r** were prepared according to the known procedures ²⁸⁻³⁰. Compounds **1c**, **1d**, **1e**, **1f**, **1g**, and **1p** were prepared as follows:

Typical Procedure²⁸: To a dried three-neck round bottom flask were added 2-methylnon-4-yn-3-ol (1.5417 g, 10 mmol), CH₂Cl₂ (20 mL), and triethylamine (1.55 mL, d = 0.72 g/mL, 1.116 g, 10 mmol) sequentially. After the mixture was cooled to -68 °C, a solution of sulfenyl chloride (1.4531 g, 10 mmol) was added dropwise within 15 min. After being stirred at -68 °C for another 15 min, methyl iodide (0.3 mL, d = 2.28 g/mL, 0.684 g, 4.8 mmol) was added, then the resulting mixture was allowed to warm up naturally to room temperature followed by quenching with water (10 mL). The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (10 mL). The combined organic layer was dried over anhydrous Na₂SO₄. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether / ethyl acetate = $15/1 \sim 8/1$) of the crude product afforded **1c** (1.3464 g, 51%) as an oil. ¹H NMR (300 MHz, CDCl₃) δ 7.68-7.56 (m, 2 H, ArH), 7.55-7.40 (m, 3 H, ArH), 5.78-5.64 (m, 1 H, =CH), 2.53-2.34 (m, 1 H), 2.33-2.14 (m, 1 H), 1.94-1.76 (m, 1 H), 1.46-1.16 (m, 4 H, $2 \times CH_2$), 1.14-0.96 (m, 6 H, $2 \times CH_3$), 0.87-0.73 (m, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.2, 200.1, 143.8, 143.4, 130.5, 130.4, 128.73, 128.70, 124.5, 124.3, 114.7, 114.4, 106.4, 106.2, 29.5, 28.4, 28.3, 22.7, 22.6, 22.3, 22.22, 22.19, 21.9, 13.6; IR (neat) v (cm⁻¹) 3058, 2960, 2930, 2871, 1951, 1578, 1465, 1443, 1379, 1364, 1293, 1083, 1049, 1022; MS (70 eV, EI) *m*/*z* (%) 262 (M⁺, 1.30), 81 (100); Anal. Cacld. for C₁₆H₂₂OS: C, 73.23, H, 8.45; Found: C, 72.93, H, 8.46.

The following compounds were prepared according to this Typical Procedure.

2. 1-Cyclohexylhepta-1,2-dien-3-yl phenyl sulfoxide (1d) wmy-3-182

The reaction of 1-cyclohexylhept-2-yn-1-ol (1.9414 g, 10 mmol), triethylamine (1.50 mL, d = 0.72 g/mL, 1.08 g, 10.7 mmol), sulfenyl chloride (1.4476 g, 10 mmol), and methyl iodide (0.3 mL, d = 2.28 g/mL, 0.684 g, 4.8 mmol) in CH₂Cl₂ (20 mL) at -78 °C afforded **1d** (1.2546 g, 41%) (eluent: petroleum ether / ethyl acetate = $20/1 \sim 10/1$): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.67-7.56 (m, 2 H, ArH), 7.56-7.40 (m, 3 H, ArH), 5.73-5.62 (m, 1 H, =CH), 2.32-1.98 (m, 2 H), 1.92-1.58 (m, 6 H), 1.45-0.98 (m, 9 H), 0.80 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.7, 200.6, 143.9, 143.5, 130.5, 130.4, 128.8, 128.7, 124.6, 124.4, 114.3, 114.1, 104.9, 104.8, 37.5, 37.4, 32.83, 32.80, 32.7, 29.58, 29.56, 25.8, 25.7, 22.8, 22.6, 22.0, 13.6; IR (neat) v (cm⁻¹) 3057, 2956, 2926, 2852, 1950, 1584, 1475, 1444, 1082, 1049, 1022; MS (70 eV, EI) *m/z* (%) 303 (M⁺+1, 8.98), 302 (M⁺, 3.07), 81 (100); Anal. Cacld. for C₁₉H₂₆OS: C, 75.45, H, 8.66; Found: C, 75.45, H, 8.73.

3. 5-Phenylpenta-1,2-dienyl phenyl sulfoxide (11)

The reaction of 5-phenylpent-1-yn-3-ol (1.6165 g, 10.1 mmol), triethylamine (1.50 mL, d = 0.72 g/mL, 1.08 g, 10.7 mmol), sulfenyl chloride (1.4631 g, 10.1 mmol), and methyl iodide (0.3 mL, d = 2.28 g/mL, 0.684 g, 4.8 mmol) in CH₂Cl₂ (20 mL) at -78 $^{\circ}$ C afforded **11** (1.5727 g, 58%) (eluent: petroleum ether / ethyl acetate = 20/1 ~ 10/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.58 (m, 1 H, ArH), 7.58-7.51 (m, 1 H, ArH), 7.51-7.36 (m, 3 H, ArH), 7.34-7.21 (m, 2 H, ArH), 7.21-7.04 (m, 3 H, ArH), 6.08-5.90 (m, 1 H, =CH), 5.77-5.62 (m, 1 H, =CH), 2.79-2.56 (m, 2 H, CH₂), 2.50-2.24 (m, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 203.6, 203.4, 144.6, 144.5, 140.42, 140.38, 130.8, 129.0, 128.3, 128.2, 126.1, 126.0, 124.0, 123.9, 102.9, 98.4, 98.3, 34.6, 29.7, 29.5; IR (neat) v (cm⁻¹) 3060, 3026, 2923, 2856, 1748, 1603, 1581, 1496, 1475, 1454, 1443, 1304, 1083, 1046; MS (70 eV, EI) *m/z* (%) 268 (M⁺, 1.01), 91 (100); Anal. Calcd. for C₁₇H₁₆OS: C, 76.08, H, 6.01; Found: C, 75.76, H, 6.05.

Preparation of Starting 1,2-Allenylic Sulfoxides 1e, 1f, and 1g

1. Deca-3,4-dien-3-yl phenyl sulfoxide (1e) wmy-4-153

- S12 -

Typical Procedure³¹: To a dried three-neck round bottom flask were added dec-3-yn-5-ol (0.8412 g, 5.0 mmol), THF (10 mL), and triethylamine (1.0 mL, d =0.72 g/mL, 0.72 g, 7.1 mmol) sequentially. After the mixture was cooled to -78 °C, a solution of sulfenyl chloride (1.0117 g, 7.0 mmol) was added dropwise in 2 min. After being stirred at -78 °C for 3 hours, water (10 mL) was added to quench the reaction. Then the mixture was extracted with Et_2O (20 mL \times 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 20/1) of the crude product afforded 1e (0.9534 g, 73%) as an oil. ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.26 (m, 5 H, ArH), 5.81-5.66 (m, 1 H, =CH), 2.36-2.05 (m, 3 H), 1.91-1.73 (m, 1 H), 1.55-1.23 (m, 6 H), 1.03-0.82 (m, 6 H, $2 \times CH_3$); ¹³C NMR (75 MHz, CDCl₃) δ 201.51, 201.48, 143.9, 143.6, 130.6, 130.5, 128.89, 128.85, 124.5, 124.4, 115.0, 114.9, 99.8, 99.6, 31.25, 31.20, 28.70, 28.67, 22.42, 22.39, 16.42, 16.37, 14.01, 13.98, 12.0; IR (neat) v (cm⁻¹)3056, 2959, 2930, 2857, 1953, 1578, 1474, 1458, 1443, 1378, 1299, 1085, 1048; MS (70 eV, EI) m/z (%) 263 (M⁺+1, 3.66), 262 (M⁺, 17.37), 191 (100); Anal. Cacld. for C₁₆H₂₂OS: C, 73.23, H, 8.45; Found: C, 72.90, H, 8.52.

The following compounds were prepared according to this Typical Procedure.

- S13 -

2. 6-Phenylhexa-2,3-dien-2-yl phenyl sulfoxide (1f) wmy-4-154

The reaction of 1-phenylhex-4-yn-3-ol (0.8707 g, 5.0 mmol), triethylamine (1.0 mL, d = 0.72 g/mL, 0.72 g, 7.1 mmol), and sulfenyl chloride (1.0214 g, 7.1 mmol) in THF (10 mL) at -78 °C afforded **1f** (0.6898 g, 49%) (eluent: petroleum ether / ethyl acetate = 20/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.55 (m, 1 H, ArH), 7.55-7.24 (m, 6 H, ArH), 7.24-7.12 (m, 3 H, ArH), 5.76-5.56 (m, 1 H, =CH), 2.86-2.65 (m, 2 H, CH₂), 2.57-2.35 (m, 2 H, CH₂), 1.70-1.57 (m, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 202.12, 202.09, 143.6, 143.4, 140.8, 140.7, 130.72, 130.70, 129.0, 128.54, 128.47, 126.25, 126.16, 124.44, 124.38, 108.8, 108.6, 97.0, 96.7, 35.1, 35.0, 30.4, 30.0, 9.4; IR (neat) v (cm⁻¹) 3060, 3026, 2920, 2856, 1956, 1603, 1580, 1496, 1474, 1453, 1443, 1389, 1090, 1048, 1011; MS (70 eV, EI) *m/z* (%) 283 (M⁺+1, 3.58), 282 (M⁺, 16.45), 177 (100); Anal. Calcd. for C₁₈H₁₈OS: C, 76.56, H, 6.42; Found: C, 76.77, H, 6.34.

3. 2,2-Dimethylnona-3,4-dien-3-yl phenyl sulfoxide (1g) wmy-4-97

The reaction of 2,2-dimethylnon-3-yn-5-ol (1.6809 g, 10 mmol), triethylamine (1.70 mL, d = 0.72 g/mL, 1.224 g, 12.1 mmol), and sulfenyl chloride (1.7347 g, 12 mmol) in THF (20 mL) at -78 °C afforded **1g** (1.7428 g, 63%) (eluent: petroleum ether / ethyl acetate = 20/1 ~ 10/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.62-7.53 (m, 2 H, ArH), 7.53-7.38 (m, 3 H, ArH), [5.51 (t, *J* = 6.9 Hz, 0.58 H, =CH), 5.22 (t, *J* = 7.2 Hz, 0.45 H, =CH)], 1.96 (q, *J* = 6.8 Hz, one proton in CH₂), 1.60 (q, *J* = 6.8 Hz, one proton in CH₂), 1.60 (q, *J* = 6.8 Hz, one proton in CH₂), 1.04-0.91 (m, 1 H, one proton in CH₂), [0.87 (t, *J* = 7.1 Hz, 1.69 H, CH₃), 0.79 (t, *J* = 7.2 Hz, 1.75 H, CH₃)]; ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 199.6, 144.6, 144.5, 130.34, 130.27, 128.5, 126.5, 125.5, 125.0, 124.7, 100.1, 99.9, 35.3, 35.1, 31.0, 30.5, 30.1, 29.9, 28.1, 27.6, 22.1, 22.0, 13.7, 13.6; IR (neat) v (cm⁻¹) 3059, 2962, 2930, 2870, 1948, 1578, 1475, 1462, 1444, 1391, 1363, 1236, 1085, 1048; MS (70 eV, EI) *m/z* (%) 277 (M⁺+1, 1.79), 276 (M⁺, 9.70), 163 (100); Anal. Cacld. for C₁₇H₂₄OS: C, 73.86, H, 8.75; Found: C, 73.86, H, 8.89.

The Reaction of 1,2-Allenylic Sulfoxide 1a AffordingE-4-Iodo-5-phenylthio-4-nonen-3-ol (E-2a)wmy-4-40

A solution of **1a** (74.9 mg, 0.3 mmol) in MeOH (4 mL) was treated with I₂ (115.2 mg, 0.45 mmol) for 5 min at 40 °C followed by the addition of a solution of BnSH (37.6 mg, 0.3 mmol) in MeOH (2 mL) with stirring. After being stirred at for 30 min, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃ at 40 $^{\circ}$ C. The mixture was extracted with ether (20 mL \times 3) and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether/ethyl acetate = 30/1) afforded E-2a (99.1 mg, 87%): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.20 (m, 5 H, ArH), 4.55 (q, J = 6.9 Hz, 1 H, CH), 2.58-2.44 (m, 1 H, one protone in CH₂), 2.36-2.23 (m, 1 H, one protone in CH₂), 2.01 (d, J = 6.9 Hz, 1 H, OH), 1.76-1.42 (m, 4 H, 2 × CH₂), 1.34-1.19 (m, 2 H, CH₂), 0.93-0.81 (m, 6 H, $2 \times CH_3$); ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 134.3, 130.4, 129.0, 127.1, 120.1, 74.2, 41.4, 31.0, 29.9, 22.2, 13.8, 9.5; IR (neat) v (cm⁻¹) 3399, 3072, 3058, 2959, 2929, 2872, 2858, 1582, 1477, 1460, 1439, 1379, 1327, 1099, 1058, 1023; MS (70 eV, EI) *m/z* (%) 376 (M⁺, 11.09), 139 (100); HRMS (EI) Cacld for C₁₅H₂₁OSI (M⁺): 376.0358; Found: 376.0361.

Preparation of Z-1-Iodo-1-alkenyl Ketones Z-3a-Z-3f

1. (Z)-4-Iodonon-3-en-5-one (Z-3a) wmy-3-83

A solution of **1a** (74.8 mg, 0.3 mmol), CHCl₃ (1 mL), and EtOH (30 μ L) was treated with I₂ (267.2 mg, 1.05 mmol) for 5 min at 40 °C followed by the addition of a solution of BnSH in CHCl₃ (0.6 M, 0.5 mL) with stirring. After being stirred for 15 min at 40 °C, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (20 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether ~ petroleum ether/ether = 300/1) afforded *Z*-**3a** (66.1 mg, 82%): Oil; ¹H NMR (300 MHz, CDCl₃) δ 6.99 (t, *J* = 6.9 Hz, 1 H, =CH), 2.83 (t, *J* = 7.4 Hz, 2 H, COCH₂), 2.49-2.37 (m, 2 H, CH₂), 1.69-1.56 (m, 2 H, CH₂), 1.44-1.23 (m, 2 H, CH₂), 1.14 (t, *J* = 7.5 Hz, 3 H, CH₃), 0.92 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 194.9, 152.9, 111.9, 37.4, 31.4, 27.0, 22.2, 13.8, 11.9; IR (neat) v (cm⁻¹) 2960, 2929, 2872, 1682, 1604, 1461, 1379, 1290, 1248, 1170, 1121, 1085; MS (70 eV, EI) *m/z* (%) 266 (M⁺, 1.19), 237 (100); HRMS (EI) Cacld for C₉H₁₅OI (M⁺): 266.0168; Found: 266.0167.

A large scale reaction:

A solution of **1a** (7.4418 g, 30 mmol), CHCl₃ (100 mL), and EtOH (3 mL) was treated with I_2 (26.6772 g, 105 mmol) for 5 min at 40 °C, then a solution of BnSH (3.5 mL, d = 1.06 g/mL, 3.71 g, 30 mmol) in CHCl₃ (50 mL) was added within 5 min.

After being stirred for 25 min at 40 °C, the mixture was quenched with 10 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (20 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether ~ petroleum ether/ether = 300/1) afforded *Z*-**3a** (6.1528 g, 77%).

The following compounds were prepared according to this procedure.

2. (Z)-3-Iodo-1-phenyloct-2-en-4-one (Z-3b) wmy-3-170

The reaction of **1b** (93.1 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (266.6 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 40 °C with stirring for 30 min afforded *Z*-**3b** (63.8 mg, 65%) (eluent: petroleum ether ~ petroleum ether/ether = 300/1 ~ petroleum ether/ether = 100/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.21 (m, 5 H, ArH), 7.11 (t, *J* = 6.9 Hz, 1 H, =CH), 3.77 (d, *J* = 6.6 Hz, 2 H, CH₂Ar), 2.80 (t, *J* = 7.5 Hz, 2 H, COCH₂), 1.68-1.55 (m, 2 H, CH₂), 1.42-1.23 (m, 2 H, CH₂), 0.90 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 194.9, 149.7, 137.1, 128.8, 128.6, 126.9, 113.1, 44.2, 37.5, 26.9, 22.2, 13.8; IR (neat) v

(cm⁻¹) 3063, 3027, 2957, 2926, 2867, 1682, 1598, 1495, 1453, 1251, 1145, 1100; MS (70 eV, EI) *m/z* (%) 328 (M⁺, 20.68), 57 (100); HRMS (EI) Cacld for C₁₄H₁₇OI (M⁺): 328.0324; Found: 328.0329.

3. (Z)-4-Iodo-2-methylnon-3-en-5-one (Z-3c) wmy-4-7

The reaction of **1c** (79.1 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.4 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 40 °C with stirring for 20 min afforded *Z*-**3c** (70.6 mg, 83%, 99.3% purity) (eluent: petroleum ether ~ petroleum ether/ether = 300/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 6.74 (d, *J* = 8.4 Hz, 1 H, =CH), 2.92-2.77 (m, 3 H, COCH₂ + CH), 1.77-1.56 (m, 2 H, CH₂), 1.44-1.23 (m, 2 H, CH₂), 1.12 (d, *J* = 6.6 Hz, 6 H, 2 × CH₃), 0.92 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 195.1, 157.1, 109.6, 37.5, 37.3, 27.0, 22.2, 20.7, 13.8; IR (neat) v (cm⁻¹) 2960, 2931, 2870, 1682, 1602, 1465, 1412, 1382, 1363, 1329, 1267, 1166, 1128, 1086; MS (70 eV, EI) *m/z* (%) 280 (M⁺, 0.76), 237 (100); HRMS (EI) Cacld for C₁₀H₁₇OI (M⁺): 280.0324; Found: 280.0317.

4. (Z)-1-Cyclohexyl-2-iodohept-1-en-3-one (Z-3d) wmy-4-9

The reaction of **1d** (90.4 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.3 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 40 °C with stirring for 30 min afforded *Z*-**3d** (62.0 mg, 65%, 96.8% purity) (eluent: petroleum ether ~ petroleum ether/ether = 300/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 6.75 (d, *J* = 8.7 Hz, 1 H, =CH), 2.80 (t, *J* = 7.5 Hz, 2 H, COCH₂), 2.60-2.50 (m, 1 H, CH), 1.87-1.52 (m, 7 H), 1.50-1.13 (m, 7 H), 0.92 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 195.2, 155.7, 109.9, 46.7, 37.5, 30.7, 27.1, 25.7, 25.2, 22.3, 13.8; IR (neat) v (cm⁻¹) 2959, 2927, 2852, 1682, 1601, 1448, 1315, 1278, 1259, 1224, 1169, 1129, 1088; MS (70 eV, EI) *m/z* (%) 321 (M⁺+1, 44.69), 320 (M⁺, 6.73), 95 (100); HRMS (EI) Cacld for C₁₃H₂₁OI (M⁺): 320.0637; Found: 320.0631.

5. (Z)-4-Iododec-4-en-3-one (Z-3e) wmy-4-156

The reaction of **1e** (79.2 mg, 0.3 mmol), 30 μ L of EtOH, 1 mL of CHCl₃, I₂ (267.7 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 40 °C with stirring for 60 min afforded *Z*-**3e** (61.7 mg, 73%) (eluent: petroleum ether ~ petroleum ether/ether = 300/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.03 (t, *J* = 6.8 Hz, 1 H,

=CH), 2.86 (q, J = 7.2 Hz, 2 H, COCH₂), 2.42 (q, J = 7.4 Hz, 2 H, CH₂), 1.64-1.44 (m, 2 H, CH₂), 1.44-1.24 (m, 4 H, 2 × CH₂), 1.16 (t, J = 7.4 Hz, 3 H, CH₃), 0.92 (t, J = 6.9Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 195.3, 151.9, 112.0, 37.9, 31.4, 31.1, 27.3, 22.4, 13.9, 9.0; IR (neat) v (cm⁻¹) 2953, 2929, 2858, 1688, 1603, 1458, 1373, 1166, 1119, 1061; MS (70 eV, EI) m/z (%) 281 (M⁺+1, 3.34), 280 (M⁺, 27.12), 57 (100); HRMS (EI) Cacld for C₁₀H₁₇OI (M⁺): 280.0324; Found: 280.0325.

6. (Z)-3-Iodo-6-phenylhex-3-en-2-one (Z-3f) wmy-4-159

The reaction of **1f** (85.2 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.4 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 40 °C with stirring for 60 min afforded *Z*-**3f** (61.9 mg, 68%) (eluent: petroleum ether ~ petroleum ether/ether = 100/1 ~ petroleum ether/ether = 50/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.28 (m, 2 H, ArH), 7.27-7.19 (m, 3 H, ArH), 7.03 (t, *J* = 6.8 Hz, 1 H, =CH), 2.90-2.82 (m, 2 H, COCH₂), 2.80-2.69 (m, 2 H, CH₂), 2.46 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 192.4, 152.0, 140.1, 128.5, 128.2, 126.4, 113.1, 39.4, 33.5, 25.2; IR (neat) v (cm⁻¹) 3061, 3026, 2924, 2858, 1682, 1603, 1496, 1454, 1428, 1356, 1299, 1228, 1168, 1087, 1030; MS (70 eV, EI) *m/z* (%) 301 (M⁺+1, 1.03), 300 (M⁺, 8.51), 91 (100); HRMS (EI) Cacld for C₁₂H₁₃OI (M⁺): 300.0011; Found: 300.0013.

Preparation of 2-Iodo-2-enals with the Same Substituents at the 3-Position 3h-3k

1. 2-Cyclohexylidene-2-iodoacetaldehyde (3h)³²

The reaction of **1h** (69.4 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.3 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at -10 °C with stirring for 30 min afforded **3h** (49.9 mg, 67%) (eluent: petroleum ether ~ petroleum ether/ether = 300/1 ~petroleum ether/ether = 80/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 9.17 (d, *J* = 0.9 Hz, 1 H, CHO), 2.98 (t, *J* = 5.1 Hz, 2 H, =CCH₂), 2.74 (t, *J* = 5.7 Hz, 2 H, =CCH₂), 1.68-1.59 (m, 6 H, 3 × CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 183.8, 171.8, 105.5, 44.5, 33.6, 28.7, 27.8, 26.1; IR (neat) v (cm⁻¹) 2931, 2855, 1678, 1577, 1445, 1388, 1348, 1314, 1268, 1235, 1222, 1133, 1109, 1091, 1058; MS (70 eV, EI) *m/z* (%) 250 (M⁺, 100).

2. 3-Ethyl-2-iodopent-2-enal (3i) wmy-3-186

The reaction of **1i** (66.6 mg, 0.3 mmol), 30 μ L of EtOH, 1 mL of CHCl₃, I₂ (267.1 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 0 °C with stirring for 30 min afforded **3i** (48.2 mg, 67%) (eluent: petroleum ether ~ petroleum ether/ether = 300/1

~petroleum ether/ether = 100/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 9.07 (s, 1 H, CHO), 2.84 (q, *J* = 7.6 Hz, 2 H, =CCH₂), 2.59 (q, *J* = 7.6 Hz, 2 H, =CCH₂), 1.21 (t, *J* = 7.7 Hz, 3 H, CH₃), 1.14 (t, *J* = 7.7 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 184.6, 174.8, 106.4, 37.8, 27.0, 14.6, 11.3; IR (neat) v (cm⁻¹) 2972, 2932, 2872, 1684, 1578, 1460, 1379, 1205, 1122, 1084, 1063; MS (70 eV, EI) *m/z* (%) 238 (M⁺, 100); HRMS (EI) Cacld for C₇H₁₁OI (M⁺): 237.9855; Found: 237.9850.

3. 3-Butyl-2-iodohept-2-enal (3j) wmy-3-191

The reaction of **1j** (82.3 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.4 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 0 °C with stirring for 45 min afforded **3j** (66.1 mg, 75%) (eluent: petroleum ether ~ petroleum ether/ether = 300/1 ~petroleum ether/ether = 200/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 9.05 (s, 1 H, CHO), 2.80 (t, *J* = 7.8 Hz, 2 H, =CCH₂), 2.55 (t, *J* = 7.7 Hz, 2 H, =CCH₂), 1.62-1.33 (m, 8 H, 4 × CH₂), 1.02-0.88 (m, 6 H, 2 × CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 184.6, 172.9, 107.2, 44.7, 34.1, 32.3, 29.3, 22.9, 22.5, 13.8, 13.7; IR (neat) v (cm⁻¹) 2958, 2930, 2861, 2721, 1683, 1578, 1465, 1381, 1078; MS (70 eV, EI) *m/z* (%) 294 (M⁺, 45.99), 55 (100); HRMS (EI) Cacld for C₁₁H₁₉OI (M⁺): 294.0481; Found: 294.0488.

4. 2-Cyclohexylidene-2-iodoacetaldehyde (3h) wmy-4-71

The reaction of **1k** (93.4 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (266.8 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at -10 °C with stirring for 60 min afforded **3h** (47.6 mg, 63%) (eluent: petroleum ether ~ petroleum ether/ether = 300/1 ~petroleum ether/ether = 80/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 9.10 (s, 1 H, CHO), 2.91 (t, *J* = 5.4 Hz, 2 H, =CCH₂), 2.67 (t, *J* = 6.0 Hz, 2 H, =CCH₂), 1.74-1.55 (m, 6 H, 3 × CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 183.8, 171.8, 105.5, 44.5, 33.6, 28.7, 27.8, 26.1.

Preparation of Z-2-Iodo-2-enals Z-31-Z-30

1. (Z)-2-Iodo-5-phenylpent-2-enal (Z-3l) wmy-3-173

The reaction of **11** (80.9 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (266.3 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 15 °C with stirring for 60 min afforded *Z*-**31** (78.3 mg, 91%) (eluent: petroleum ether ~ petroleum ether/ether = $300/1 \sim$ petroleum ether/ether = 100/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 8.56 (s, 1 H, CHO), 7.38-7.10 (m, 6 H, ArH + =CH), 2.92-2.76 (m, 4 H, 2 × CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 187.5, 160.9, 139.6, 128.4, 128.1, 126.2, 112.2, 37.7, 33.0; IR

(neat) v (cm⁻¹) 3081, 3063, 3026, 2924, 2846, 2816, 2724, 1694, 1604, 1496, 1454, 1188, 1113, 1075; MS (70 eV, EI) *m/z* (%) 286 (M⁺, 2.95), 91 (100); HRMS (EI) Cacld for C₁₁H₁₁OI (M⁺): 285.9855; Found: 285.9852.

A large scale reaction:

A solution of **11** (5.3621 g, 20 mmol), CHCl₃ (70 mL), and EtOH (2 mL) was treated with I₂ (17.7872 g, 70 mmol) for 5 min at 15 °C. Then a solution of BnSH (2.35 mL, d = 1.06 g/mL, 2.491 g, 20 mmol) in CHCl₃ (30 mL) was added within 5 min. After being stirred for 55 min at 15 °C, the mixture was quenched with 20 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (50 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether ~ petroleum ether/ether = 300/1 ~ petroleum ether/ether = 100/1) afforded *Z*-**31** (4.7854 g, 84%).

2. (Z)-2-Iodooct-2-enal (Z-3m) wmy-3-172

The reaction of **1m** (70.6 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.7 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 15 °C with stirring for 30 min afforded *Z*-**3m** (63.4 mg, 83%) (eluent: petroleum ether ~ petroleum ether/ether = $300/1 \sim$ petroleum ether/ether = 100/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 8.68 (s, 1 H, CHO), 7.21 (t, *J* = 7.1 Hz, 1 H, =CH), 2.55 (q, *J* = 7.3 Hz, 2 H, CH₂), 1.63-1.50 (m, 2 H, CH₂), 1.49-1.31 (m, 4 H, 2 × CH₂), 0.92 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 187.9, 162.7, 111.7, 36.5, 31.3, 27.1, 22.3, 13.8; IR (neat) v (cm⁻¹) 2956, 2927, 2858, 2810, 2726, 1695, 1606, 1465, 1380, 1199, 1141, 1082; MS (70 eV, EI) *m/z* (%) 252 (M⁺, 12.81), 41 (100); HRMS (EI) Cacld for C₈H₁₃OI (M⁺): 252.0011; Found: 252.0014.

3. (Z)-2-Iododec-2-enal (Z-3n) wmy-3-176

The reaction of **1n** (78.9 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (266.5 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 15 °C with stirring for 45 min afforded *Z*-**3n** (65.7 mg, 78%) (eluent: petroleum ether ~ petroleum ether/ether = $300/1 \sim$ petroleum ether/ether = 100/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 8.68 (s, 1 H, CHO), 7.20 (t, *J* = 6.9 Hz, 1 H, =CH), 2.55 (q, *J* = 7.3 Hz, 2 H, CH₂), 1.65-1.50 (m, 2 H, CH₂), 1.46-1.17 (m, 8 H, 4 × CH₂), 0.89 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 187.9, 162.7, 111.7, 36.5, 31.6, 29.2, 28.9, 27.4, 22.5, 14.0; IR (neat) v (cm⁻¹) 2926, 2856, 2806, 2726, 1698, 1605, 1465, 1379, 1185, 1140,

1086; MS (70 eV, EI) m/z (%) 280 (M⁺, 1.76), 55 (100); HRMS (EI) Cacld for $C_{10}H_{17}OI$ (M⁺): 280.0324; Found: 280.0324.

4. (Z)-2-Iodo-4-phenylbut-2-enal (Z-30) wmy-4-50

The reaction of **1o** (76.6 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.4 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at 20 °C with stirring for 30 min afforded *Z*-**3o** (30.5 mg, 37%) (eluent: petroleum ether ~ petroleum ether/ether = 300/1 ~petroleum ether/ether = 80/1): Oil; ¹H NMR (300 MHz, CDCl₃) δ 8.62 (s, 1 H, CHO), 7.42-7.20 (m, 6 H, ArH + =CH), 3.82 (d, *J* = 7.2 Hz, 2 H, CH₂Ar); ¹³C NMR (75 MHz, CDCl₃) δ 187.9, 160.2, 136.4, 129.0, 128.7, 127.2, 112.1, 42.7; IR (neat) v (cm⁻¹) 3027, 2922, 2820, 1695, 1599, 1494, 1453, 1113, 1072; MS (70 eV, EI) *m/z* (%) 272 (M⁺, 33.00), 115 (100); HRMS (EI) Cacld for C₁₀H₉OI (M⁺): 271.9698; Found: 271.9692.

Preparation of E-2-iodo-3-phenyl-2-enals E-3p- E-3q

1. (*E*)-2-Iodo-3-phenylbut-2-enal (*E*-3p) wmy-4-68

The reaction of **1p** (76.7 mg, 0.3 mmol), 30 µL of EtOH, 1 mL of CHCl₃, I₂ (267.6 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at -15 °C stirred for 60 min afforded the crude product (The *E/Z* ratio of the product is 96/4 as determined by ¹H NMR analysis with CH₂Br₂ as the internal standard.). Purification (eluent: petroleum ether ~ petroleum ether/ether = 300/1 ~petroleum ether/ether = 100/1) afforded *E*-**3p** (58.9 mg, 72%, *E/Z* \geq 98/2, if any): Oil; ¹H NMR (300 MHz, CDCl₃) δ 8.46 (s, 1 H, CHO), 7.48-7.39 (m, 3 H, ArH), 7.30-7.21 (m, 2 H, ArH), 2.63 (s, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 186.9, 167.3, 139.2, 129.3, 128.6, 128.2, 110.3, 33.6; IR (neat) v (cm⁻¹) 3054, 3021, 2923, 2847, 2718, 1674, 1578, 1560, 1489, 1442, 1375, 1123, 1025; MS (70 eV, EI) *m/z* (%) 272 (M⁺, 50.38), 115 (100); Anal. Calcd. for C₁₀H₉OI: C, 44.14, H, 3.33; Found: C, 44.17, H, 3.44.

2. (E)-2-Iodo-3-phenylpent-2-enal (E-3q) Wmy-4-113

The reaction of **1q** (80.7 mg, 0.3 mmol), 30 μ L of EtOH, 1 mL of CHCl₃, I₂ (267.5 mg, 1.05 mmol), and BnSH in CHCl₃ (0.6 M, 0.5 mL) at -10 °C stirred for 45 min afforded the crude product (The *E/Z* ratio of the product is 96/4 as determined by

¹H NMR analysis with CH₂Br₂ as the internal standard.). Purification (eluent: petroleum ether ~ petroleum ether/ether = 300/1 ~ petroleum ether/ether = 100/1) afforded only *E*-**3q** (22.8 mg, 26%): Oil; ¹H NMR (300 MHz, CDCl₃) δ 8.40 (s, 1 H, CHO), 7.48-7.33 (m, 3 H, ArH), 7.25-7.14 (m, 2 H, ArH), 2.94 (q, *J* = 7.5 Hz, 2 H, CH₂), 1.05 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 187.3, 172.3, 138.1, 129.2, 128.55, 128.49, 109.4, 39.5, 11.3; IR (neat) v (cm⁻¹) 3051, 2973, 2932, 2849, 2724, 1679, 1575, 1561, 1442, 1377, 1284, 1128, 1068; MS (70 eV, EI) *m/z* (%) 286 (M⁺, 100); HRMS (EI) Cacld for C₁₁H₁₁OI (M⁺): 285.9855; Found: 285.9856.

The reaction of 3 with 2,4- dinitrophenylhydrazine affording 4

1. (*E*)-1-(2,4-Dinitrophenyl)-2-((*Z*)-4-iodonon-3-en-5-ylidene)hydrazine (4a) wmy-4-61

To a solution of 2,4-dinitrophenylhydrazine (198.4 mg, 1.0 mmol), H₂SO₄ (1.5 mL, 98%), EtOH (15 mL), and H₂O (45 mL) was added a solution of *Z*-**3a** (291.8 mg, 1.1 mmol) in EtOH (5 mL) dropwise within 5 min. After being stirred for 5 hours at room temperature, the mixture was extracted with EtOAc (50 mL \times 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column

wmy-3-195

(41)

chromatography on silica gel (petroleum ether/ethyl acetate = 50/1) afforded **4a** (318.4 mg, 71%) as solid: mp 113.1-114.0 °C (EtOAc/*n*-hexane); ¹H NMR (300 MHz, CDCl₃) δ 11.38 (s, 1 H, NH), 9.14 (d, *J* = 2.7 Hz, 1 H, ArH), 8.42-8.34 (dd, *J*₁ = 9.5 Hz, *J*₂ = 2.5 Hz, 1 H, ArH), 8.16 (d, *J* = 9.6 Hz, 1 H, ArH), 6.37 (t, *J* = 6.8 Hz, 1 H, =CH), 2.72 (t, *J* = 7.8 Hz, 2 H, CH₂), 2.57-2.43 (m, 2 H, CH₂), 1.67-1.44 (m, 4 H, 2 × CH₂), 1.15 (t, *J* = 7.5 Hz, 3 H, CH₃), 1.01 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 154.1, 145.5, 145.0, 138.5, 130.2, 129.8, 123.3, 117.6, 106.8, 31.7, 28.0, 27.2, 22.9, 13.7, 12.6; IR (KBr) v (cm⁻¹) 3312, 3106, 2963, 2932, 2872, 1617, 1593, 1503, 1422, 1335, 1311, 1257, 1221, 1135, 1110; MS (70 eV, EI) *m/z* (%) 446 (M⁺, 12.42), 41 (100); Anal. Calcd. for C₁₅H₁₉IN₄O₄: C, 40.37, H, 4.29, N, 12.56; Found: C, 40.58, H, 4.29, N, 12.53.

2. (*E*)-1-(2,4-Dinitrophenyl)-2-((*Z*)-2-iodo-5-phenylpent-2-enylidene)hydrazine

To a solution of 2,4-dinitrophenylhydrazine (199.1 mg, 1.0 mmol), H_2SO_4 (1.5 mL, 98%), EtOH (15 mL), and H_2O (45 mL) was added a solution of Z-3l (314.8 mg, 1.1 mmol) in EtOH (5 mL) dropwise within 3 min. After being stirred for 3 hours at room temperature, the mixture was extracted with EtOAc (50 mL × 3), washed with

brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) afforded **41** (379.1 mg, 81%) as solid: mp 193.9-194.2 °C (EtOAc/*n*-hexane); ¹H NMR (300 MHz, CDCl₃) δ 11.27 (s, 1 H, NH), 9.13 (d, *J* = 2.4 Hz, 1 H, ArH), 8.42-8.33 (dd, *J_I* = 9.0 Hz, *J*₂ = 2.6 Hz, 1 H, ArH), 8.06 (d, *J* = 9.3 Hz, 1 H, ArH), 7.39 (s, 1 H, =CH), 7.37-7.28 (m, 2 H, ArH), 7.26-7.18 (m, 3 H, ArH), 6.52-6.45 (m, 1 H, =CH), 2.93-2.75 (m, 4 H, 2 × CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 149.0, 147.5, 144.9, 140.3, 138.6, 130.2, 129.6, 128.6, 128.4, 126.4, 123.3, 117.4, 101.8, 38.1, 34.0; IR (KBr) v (cm⁻¹) 3414, 3303, 3090, 3022, 2930, 2858, 1616, 1585, 1515, 1504, 1421, 1332, 1314, 1139, 1091, 1077; MS (70 eV, EI) *m/z* (%) 466 (M⁺, 4.17), 91 (100); Anal. Calcd. for C₁₇H₁₅IN₄O₄: C, 43.79, H, 3.24, N, 12.02; Found: C, 43.90, H, 3.13, N, 11.88.

The Synthetic Application of the Z-3a Affording 5-6

1. (*E*)-4-Phenylnon-3-en-5-one (5) Wmy-4-30

To a solution of Z-3a (79.9 mg, 0.3 mmol) in 1,2-dimethoxyethane (1.5 mL) were added Na₂CO₃ (95.8 mg, 0.9 mmol), H₂O (1.5 mL), phenyl boronic acid (40.4 mg,

0.33 mmol), and Pd(OAc)₂ (3.5 mg, 0.016 mmol) sequentially. The mixture was stirring at room temperature under nitrogen for 13 h. After the reaction complete, 10 mL of ethyl ether was added. Filtration and evaporation, then column chromatography on silia gel (eluent: petroleum ether/ethyl ether = 100:1) gave **5** (54.8 mg, 84%): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.26 (m, 3 H, ArH), 7.14-7.06 (m, 2 H, ArH), 6.84 (t, *J* = 7.5 Hz, 1 H, =CH), 2.54 (t, *J* = 7.5 Hz, 2 H, CH₂), 2.13-1.98 (m, 2 H, CH₂), 1.63-1.50 (m, 2 H, CH₂), 1.37-1.20 (m, 2 H, CH₂), 1.01 (t, *J* = 7.5 Hz, 3 H, CH₃), 0.87 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 201.3, 144.1, 142.2, 136.3, 129.5, 128.2, 127.3, 39.2, 26.6, 22.9, 22.3, 13.9, 13.3; IR (neat) v (cm⁻¹) 3051, 3024, 2960, 2933, 2873, 1690, 1619, 1597, 1494, 1459, 1442, 1378, 1266, 1143, 1072, 1029; MS (70 eV, EI) *m/z* (%) 216 (M⁺, 6.03), 131 (100); HRMS (EI) Cacld for C₁₅H₂₀O (M⁺): 216.1514; Found: 216.1518.

2. (*E*)-4-(Phenylethynyl)non-3-en-5-one (6) Wmy-4-60

To a solution of Z-3a (80.3 mg, 0.3 mmol) in THF (1 mL) were added $Pd(PPh_3)_2Cl_2$ (10.6 mg, 0.015 mmol), a solution of phenylacetylene (46.1 mg, 0.45 mmol) in THF (1 mL), CuI (5.8 mg, 0.03 mmol), and a solution of *i*-Pr₂NH (48.6 mg,

0.48 mmol) in THF (1 mL) sequentially. The mixture was stirring at 0 °C over a period of 2 h under nitrogen. After the reaction complete, 5 mL of ethyl ether was added. Filtration, evaporation and column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 80:1) gave **6** (68.4 mg, 94%): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.57-7.43 (m, 2 H, ArH), 7.42-7.27 (m, 3 H, ArH), 7.13 (t, *J* = 7.7 Hz, 1 H, =CH), 2.85 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.58-2.45 (m, 2 H, CH₂), 1.73-1.60 (m, 2 H, CH₂), 1.46-1.30 (m, 2 H, CH₂), 1.13 (t, *J* = 7.7 Hz, 3 H, CH₃), 0.94 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 197.8, 151.9, 131.3, 128.5, 128.3, 123.9, 122.9, 97.0, 84.2, 40.0, 26.1, 24.2, 22.3, 13.9, 12.6; IR (neat) v (cm⁻¹) 2960, 2933, 2873, 1700, 1601, 1587, 1490, 1459, 1442, 1378, 1254, 1165, 1141, 1099, 1067, 1019; MS (70 eV, EI) *m/z* (%) 240 (M⁺, 31.03), 57 (100); HRMS (EI) Cacld for C₁₇H₂₀O (M⁺): 240.1514; Found: 240.1512.

Experiments for Mechanistic Study:

A solution of **1a** (74.2 mg, 0.3 mmol), CHCl₃ (1 mL), and CH₃¹⁸OH (30 μ L) was treated with I₂ (267.4 mg, 1.05 mmol) for 5 min at 40 °C followed by the addition of a

solution of BnSH in CHCl₃ (0.6 M, 0.5 mL) with stirring. After being stirred for 20 min at 40 °C, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (20 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether ~ petroleum ether/ether = 300/1) afforded *Z*-**3a** (71.6 mg, 90%): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.00 (t, *J* = 6.8 Hz, 1 H, =CH), 2.83 (t, *J* = 7.5 Hz, 2 H, COCH₂), 2.51-2.36 (m, 2 H, CH₂), 1.71-1.54 (m, 2 H, CH₂), 1.44-1.22 (m, 2 H, CH₂), 1.15 (t, *J* = 7.5 Hz, 3 H, CH₃), 0.92 (t, *J* = 7.2 Hz, 3 H, CH₃).

2. Isotopic distribution experiments

1). Synthesis of Nona-3,4-dien-5-yl phenyl sulfoxide-¹⁸O 1a-¹⁸O

Na (0.4611 g, 2.0 mmol) was added to 1.0 mL of ¹⁸O-labelled water (86% H₂¹⁸O) in a reaction tube. Then 3-bromonon-4-yne (1.0153 g, 5.0 mmol) was added into the tube in a glove box. The resulting mixture was refluxed for 19 h with continuous stirring under N₂ atmosphere. The resulting mixture was allowed to cool down naturally to room temperature followed by quenching with water (5 mL), extracted with Et₂O (10 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) of the impurity crude product 7-¹⁸O (0.3134 g) as an oil.

To a dried reaction tube were added crude product non-4-yn-3-ol (¹⁸O) 7-¹⁸O (0.3134 g) prepared above, THF (10 mL), and triethylamine (0.4 mL, d = 0.72 g/mL, 0.288 g, 2.85 mmol) sequentially under N₂ atmosphere. After the mixture was cooled to -78 °C, a solution of sulfenyl chloride (0.3821 g, 2.64 mmol) was added dropwise within 2 min. After being stirred at -78 °C for 60 min, water (5 mL) was added to quench the reaction. The resulting mixture was extracted with Et₂O (10 mL × 3), washed by brine, dried over anhydrous Na₂SO₄. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 20/1) of the product afforded **1a**-¹⁸O (0.2174 g, 17% in two steps, 64% ¹⁸O) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.56 (m, 2 H, ArH), 7.56-7.36 (m, 3 H, ArH), 5.83-5.66 (m, 1 H, =CH), 2.29-2.07 (m, 3 H, CH₂ + one proton in CH₂), 1.93-1.70 (m, 1 H, one proton in CH₂), 1.40-1.14 (m, 4 H, 2 × CH₂), 1.14-0.96 (m, 3 H, CH₃), 0.90-0.73 (m, 3 H, CH₃); IR (neat) v (cm⁻¹) 3057, 2961, 2931, 2872, 1951, 1581, 1475, 1457, 1443, 1378, 1322, 1303, 1083, 1049, 1022; MS (70 eV, EI) *m/z* (%) 250 (M (¹⁸O)⁺, 30.46),

- S35 -

248 (M (^{16}O)⁺, 15.12), 221 ((M (^{18}O)-Et)⁺, 100), 219 ((M (^{16}O)-Et)⁺, 46.94); HRMS (EI) Cacld for C₁₅H₂₀¹⁶OS (M⁺): 248.1235; Found: 248.1232; HRMS (EI) Cacld for C₁₅H₂₀¹⁸OS (M⁺): 250.1277; Found: 250.1279.

The ¹⁸O% of **1a**-¹⁸O was detemined by MS spectrum. The natural abundance of the stable isotopes of some common elements has been reported by literatures. The presence and number of sulphur atoms is usually indicated by the contribution of ³⁴S to the M+2 peak. Various combinations of C, H, O will thus give rise to the intensity of the M+2 peak. According to the theoretical calculations, the ratio $C_{15}H_{20}^{16}OS$: $C_{15}H_{20}^{18}OS = 100:4.5$. Thus the intensity of M+2 ($C_{15}H_{20}^{18}OS$) peak will be 4.5 percent of the intensity of the molecular peak M ($C_{15}H_{20}^{16}OS$). The relative abundances of 221 [M (¹⁸O)-Et]⁺, 219 [(M (¹⁶O)-Et)⁺ of **1a**-¹⁸O are 100, 46.94. (The intensity of (M-Et)⁺ could be calculated due to the contribution from Et to M+2 is extremely small.) The ¹⁸O% of **1a**-¹⁸O can be calculated as follow: (100-46.94*4.5%)/(100-46.94*4.5%+46.94)=67.6% (See pages 102-104).

In additional, the spurious contributions to the isotope peak intensities from weak background peaks or from impurities in the sample must be considered. The spurious contribution of **1a** to M+2: (3.65-45.44*4.5%)/(3.65-45.44*4.5%+45.44)=3.4% (See pages 106-107).

So the ¹⁸O% of **1a**-¹⁸O is 67.%-3.41% \approx 64%.
(Z)-4-Iodonon-3-en-5-one-¹⁸O Z-3a-¹⁸O wmy-5-66

A solution of **1a**-¹⁸O (89.4 mg, 0.36 mmol, 64% ¹⁸O), CHCl₃ (1.2 mL), and EtOH $(36 \ \mu L)$ was treated with I₂ (320.7 mg, 1.26 mmol) for 5 min at 40 °C followed by the addition of a solution of BnSH in CHCl₃ (44.7mg, 0.36 mmol, 0.5 mL) with stirring. After being stirred for 60 min at 40 °C, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (20 mL \times 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether ~ petroleum ether/ether = 300/1) afforded Z-**3a**-¹⁸O (77.4 mg, 81%, 41% ¹⁸O): Oil; ¹H NMR (300 MHz, CDCl₃) δ 6.99 (t, J = 6.9 Hz, 1 H, =CH), 2.82 (t, J = 7.5 Hz, 2 H, COCH₂), 2.49-2.36 (m, 2 H, CH₂), 1.70-1.53 (m, 2 H, CH₂), 1.41-1.28 (m, 2 H, CH₂), 1.14 (t, J = 7.5 Hz, 3 H, CH₃), 0.93 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75) MHz, CDCl₃) δ 195.0, 152.9, 111.9, 37.5, 31.5, 27.1, 22.3, 13.8, 12.0; IR (neat) v (cm⁻¹) 2959, 2932, 2872, 1682, 1605, 1457, 1413, 1378, 1323, 1280, 1171, 1121, 1085, 1019; MS (70 eV, EI) m/z (%) 268 (M (¹⁸O)⁺, 0.91), 266 (M (¹⁶O)⁺, 1.36), 239 $((M (^{18}O)-Et)^+, 65.81), 237 ((M (^{16}O)-Et)^+, 91.50), 53 (100); HRMS (EI) Cacld for$ C₉H₁₅¹⁶OI (M⁺): 266.0168; Found: 266.0171; HRMS (EI) Cacld for C₉H₁₅¹⁸OI (M⁺): 268.0210; Found: 268.0204. The ¹⁸O% of *Z*-**3a**-¹⁸O was detemined by MS spectrum: 41.8%-0.6% \approx 41% (see pages 110-114).

E-4-Iodo-5-phenylthio-4-nonen-3-ol-¹⁸O (*E*-2a-¹⁸O) wmy-6-44

A solution of **1a**-¹⁸O (163.2 mg, 0.65 mmol, 69% ¹⁸O) in MeOH (8 mL) was treated with I₂ (248.3 mg, 0.98 mmol) for 5 min at 40 °C followed by the addition of a solution of BnSH (121.0 mg, 0.98 mmol) in MeOH (2 mL) with stirring. After being stirred at for 60 min, the mixture was quenched with 5 mL of water at 40 °C followed by the addition of a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with ether (10 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) afforded *E*-**2a**-¹⁸O (208.0 mg, 84%, 69% ¹⁸O): Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.16 (m, 5 H, ArH), 4.56 (t, *J* = 6.8 Hz, 1 H, CH), 2.58-2.44 (m, 1 H, one protone in CH₂), 2.36-2.22 (m, 1 H, one protone in CH₂), 2.01 (bs, 1 H, OH), 1.74-1.40 (m, 4 H, 2 × CH₂), 1.34-1.16 (m, 2 H, CH₂), 0.94-0.77 (m, 6 H, 2 × CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 137.6, 134.3, 130.3, 129.0, 127.0, 120.1, 74.2, 41.3, 30.9, 29.9, 22.2, 13.8, 9.5; IR (neat) v (cm⁻¹) 3386, 3058, 2959, 2929, 2872, 1582, 1476, 1461, 1439, 1379, 1327, 1237, 1098, 1055, 1024, 1002; MS (70 eV, EI) m/z (%) 378 (M (¹⁸O)⁺, 3.07), 376 (M (¹⁶O)⁺, 1.20), 141 (100); HRMS (EI) Cacld for C₁₅H₂₁¹⁸OSI (M⁺): 378.0400; Found: 378.408; HRMS (EI) Cacld for C₁₅H₂₁¹⁶OSI (M⁺): 376.0358; Found: 376.0352. The ¹⁸O% of *E*-**2a**-¹⁸O was detemined by MS spectrum: 71.5%-1.7% \approx 69% (see pages 117-121).

E-2a-¹⁸O reacted with 45% HI aqueous affording *Z*-3a: wmy-6-45:

A solution of *E*-**2a**-¹⁸O (123.8 mg, 0.33 mmol, 69% ¹⁸O), CHCl₃ (6 mL), and EtOH (0.12 mL) was treated with 45 wt.% HI in H₂O (0.66 mmol, 188 µL) for 12 hours at 40 °C. The reaction was quenched with 5 mL of water, extracted with Et₂O (10 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether/ether = 300/1) afforded *Z*-**3a**-¹⁸O (30.5 mg, 35%, 1% ¹⁸O): Oil; ¹H NMR (300 MHz, CDCl₃) δ 6.99 (t, *J* = 6.8 Hz, 1 H, =CH), 2.83 (t, *J* = 7.5 Hz, 2 H, COCH₂), 2.52-2.36 (m, 2 H, CH₂), 1.74-1.56 (m, 2 H, CH₂), 1.46-1.28 (m, 2 H, CH₂), 1.15 (t, *J* = 7.5 Hz, 3 H, CH₃), 0.92 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 195.0, 153.0, 111.9, 37.5, 31.5, 27.1, 22.3, 13.8, 12.0; MS (70 eV, EI) *m/z* (%) 268 (M (¹⁸O)⁺, 0.04), 266 (M (¹⁶O)⁺, 1.16), 239 ((M (¹⁸O)-Et)⁺, 1.84), 237 ((M (¹⁶O)-Et)⁺, 100). The ¹⁸O% of *Z*-**3a**-¹⁸O was detemined by MS spectrum: 1.8%-0.6% ≈ 1% (See pages 122 and 123).

3. 4-Bromophenthyl alcohol as additive for the reaction wmy-4-109

A solution of **1a** (75.1 mg, 0.3 mmol), CHCl₃ (1 mL), and 4-bromophenthyl alcohol (101.9 mg, 0.51 mmol) was treated with I₂ (266.8 mg, 1.05 mmol) for 5 min at 40 °C followed by the addition of a solution of BnSH in CHCl₃ (0.6 M, 0.5 mL) with stirring. After being stirred for 60 min at 40 °C, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (20 mL × 3), washed with brine, and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether ~ petroleum ether/ether = $300/1 \sim$ petroleum ether/ethyl acetate = 10/1) afforded *Z*-**3a** (31.3 mg, 39%), **8**³³ (21.9 mg, 31%), **9** (10.5 mg, 32%), **10** (9.6 mg, 26%), and 4-bromophenthyl alcohol (96.8 mg, 95%).

Z-**3a**: Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.00 (t, *J* = 6.8 Hz, 1 H, =CH), 2.83 (t, *J* = 7.4 Hz, 2 H, COCH₂), 2.50-2.36 (m, 2 H, CH₂), 1.72-1.54 (m, 2 H, CH₂), 1.45-1.24 (m, 2 H, CH₂), 1.15 (t, *J* = 7.7 Hz, 3 H, CH₃), 0.92 (t, *J* = 7.2 Hz, 3 H, CH₃).

8³³: Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.39 (m, 2 H, ArH), 7.34-7.12 (m, 8 H, ArH), 3.93 (s, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 137.0, 136.6, 129.4, 128.9, 128.5, 127.7, 127.5, 126.8, 43.4; IR (neat) v (cm⁻¹) 3060, 3028, 2925, 2852, 1945, 1876, 1578, 1494, 1476, 1453, 1438, 1299, 1230, 1199, 1068, 1024; MS (70 eV, EI) *m/z* (%) 233 (M⁺+1, 2.82), 232 (M⁺, 17.13), 91 (100).

9: Oil; CAS: 882-33-7. ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.45 (m, 4 H, ArH), 7.36-7.14 (m, 6 H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 137.0, 129.0, 127.5, 127.1; IR (neat) v (cm⁻¹) 3072, 3058, 2926, 2852, 1578, 1476, 1438, 1296, 1068, 1023; MS (70 eV, EI) *m/z* (%) 219 (M⁺+1, 6.45), 218 (M⁺, 50.76), 109 (100).

10: Oil; CAS: 3076-69-5. ¹H NMR (300 MHz, CDCl₃) δ 7.38-7.17 (m, 10 H, ArH), 3.59 (s, 4 H, 2 × CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 137.3, 129.4, 128.4, 127.4, 43.3; IR (neat) v (cm⁻¹) 3084, 3061, 3028, 2956, 2923, 2849, 1601, 1494, 1453, 1414, 1229, 1198, 1070, 1028; MS (70 eV, EI) *m/z* (%) 247 (M⁺+1, 2.67), 246 (M⁺, 14.02), 91 (100).

4-Bromophenthyl alcohol: Oil; CAS: 4654-39-1. ¹H NMR (300 MHz, CDCl₃) δ 7.40 (d, *J* = 8.1 Hz, 2 H, ArH), 7.06 (d, *J* = 8.1 Hz, 2 H, ArH), 3.77 (t, *J* = 6.0 Hz, 2 H, CH₂), 2.76 (t, *J* = 6.0 Hz, 2 H, CH₂), 2.29 (bs, 1 H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 137.5, 131.4, 130.6, 120.1, 63.0, 38.4.

A solution of **8** (232.6 mg, 1.0 mmol), CHCl₃ (10 mL), and EtOH (0.2 mL) was treated with I₂ (255.1 mg, 1.0 mmol) at 40 °C with stirring. After being stirred for 17 h at 40 °C, the mixture was quenched with a saturated aqueous solution of Na₂S₂O₃. The mixture was extracted with Et₂O (20 mL \times 3) and dried over anhydrous Na₂SO₄. Filtration, evaporation, and column chromatography on silica gel (petroleum ether) afforded, **8** (107.8 mg, 46%), **9** (57.1 mg, 52%), **10** (64.9 mg, 54%).

8: Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.36 (m, 2 H, ArH), 7.32-7.10 (m, 8 H, ArH), 3.91 (s, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 137.0, 136.5, 129.3, 128.8, 128.5, 127.6, 127.5, 126.7, 43.3.

9: Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.38 (m, 4 H, ArH), 7.30-7.08 (m, 6 H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 136.9, 129.0, 127.4, 127.0.

10: Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.15 (m, 10 H, ArH), 3.59 (s, 4 H, 2 × CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 137.3, 129.4, 128.4, 127.4, 43.2.

References:

- 1. T. Tsuda, T. Kiyoi, T. Saegusa J. Org. Chem. 1990, 55, 2554.
- 2. a) K. Kokubo, K. Matsumasa, M. Miura, M. Nomura J. Org. Chem. 1997, 62, 4564.
 b) C.-H. Jun, H. Lee, J.-B. Hong, B.-I. Kwon Angew. Chem., Int. Ed. 2002, 41, 2146.
- V. M. Williams, J. C. Leung, R. L. Patman, M. J. Krische *Tetrahedron* 2009, 65, 5024.
- 4. S. Hatanaka, Y. Obora, Y. Ishii Chem. Eur. J. 2010, 16, 1883.
- 5. a) G. S. Viswanathan, C.-J. Li *Tetrahedron Lett.* 2002, 43, 1613. b) A. Hayashi, M. Yamaguchi, M. Hirama *Synlett* 1995, 195. c) M. Curini, F. Epifano, F. Maltese; O. Rosati *Synlett* 2003, 552. d) M. F. A. Adamo, G. Bellini, S. Suresh *Tetrahedron* 2011, 67, 5784.
- A. El-Batta, C. Jiang, W. Zhao, R. Anness, A. L. Cooksy, M. Bergdahl J. Org. Chem. 2007, 72, 5244.
- 7. a) B. E. Maryanoff, A. B. Reitz *Chem. Rev.* 1989, **89**, 863. b) G. Sabitha, P. Gopal,
 J. S. Yadav *Tetrahedron: Asymmetry* 2009, **20**, 2205.
- Y. Sugawara, W. Yamada, S. Yoshida, T. Ikeno, T. Yamada J. Am. Chem. Soc. 2007, 129, 12902.
- a) M. Egi, Y. Yamaguchi, N. Fujiwara, S. Akai Org. Lett. 2008, 10, 1867. b) M. N.
 Pennell, M. G. Unthank, P. Turner, T. D. Sheppard J. Org. Chem. 2011, 76, 1479.
- a) M. Picquet, C. Bruneau, P. H. Dixneuf Chem. Commun. 1997, 1201. b) V.
 Cadierno, S. E. García-Garrido, J. Gimeno Adv. Synth. Catal. 2006, 348, 101.

- 11. a) C. P. Mehnert, N. C. Dispenziere, R. A. Cook *Chem. Commun.* 2002, 1610. b) J. Hamaya, T. Suzuki, T. Hoshi, K. Shimizu, Y. Kitayama, H. Hagiwara *Synlett* 2003, 873. c) F. Niu, L. Zhang, S.-Z. Luo, W.-G. Song *Chem. Commun.* 2010, 46, 1109. d) S. Abelló, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, D. Tichit, B. Coq *Chem. Commun.* 2004, 1096. e) A. Arnold, M. Markert, R. Mahrwald *Synthesis* 2006, 7, 1099.
- E. J. Corey, H. A. Kirst, John A. Katzenellenbogen J. Am. Chem. Soc. 1970, 92, 6314.
- 13. a) J.-S. Zheng, H.-N. Chang, F.-L. Wang, L. Liu J. Am. Chem. Soc. 2011, 133, 11080. b) K. Ohmori, T. Suzuki, K. Taya, D. Tanabe, T. Ohta, K. Suzuki Org. Lett. 2001, 3, 1057. c) B. D. Jones, J. J. La Clair, C. E. Moore, A. L. Rheingold, M. D. Burkart Org. Lett. 2010, 12, 4516. d) S. Tamura, S. Doke, N. Murakami *Tetrahedron* 2010, 66, 8476.
- 14. H. Li, C. Morin Tetrahedron Lett. 2004, 45, 5673.
- 15. a) P. Gamez, C. Ariente, J. Goré, B. Cazes *Tetrahedron* 1998, **54**, 14825. b) H. E.
 Ensley, R. R. Buescher, K. Lee *J. Org. Chem.* 1982, **47**, 404. c) G. A. Tolstikov, M.
 S. Miftakhov, N. A. Danilova, Y. L. Velder *Synthesis* 1986, 496. d) W. Adam, P.
 Klug *Synthesis* 1994, 567. e)E.Piers, P.D. Coish *Synthesis* 1995, 47.
- 16. a) G. Pattenden, G. Rescourio Org. Biomol. Chem., 2008, 6, 3428. b) R. S.
 Coleman, M. C. Walczak, E. L. Campbell J. Am. Chem. Soc. 2005, 127, 16038. c)
 A. Pollex, M. Hiersemann Org. Lett. 2005, 7, 5705. d) N. A. Morra, B. L.
 Pagenkopf Org. Lett. 2011, 13, 572. e) D. Oehlrich, S. M. E. Vidot, M. Davies, G. J.

Clarkson, M. Shipman Tetrahedron 2007, 63, 4703.

- a) L. Commeiras, M. Santelli, J.-L. Parrain *Tetrahedron Lett.* 2003, 44, 2311. b) S.
 Tamura, M. Tonokawa, N. Murakami *Tetrahedron Lett.* 2010, 51, 3134.
- 18. D. Zhang, J. M. Ready J. Am. Chem. Soc. 2007, 129, 12088.
- 19. a) F.-L. Qing, W.-Z. Gao, J. Ying J. Org. Chem. 2000, 65, 2003. b) T. Yamazaki,
 T. Yamamoto, R. Ichihara J. Org. Chem. 2006, 71, 6251.
- R. Jiméneza, L. A. Maldonado, H. Salgado-Zamora Nat. Prod. Res. 2010, 24, 1274.
- 21. a) M. Slodowicz, S. Barata-Vallejo, A. Vázquez, N. S. Nudelman, A. Postigo J. *Fluorine Chem.* 2012, 135, 137. b) J. F. Chesa, D. Velasco, F. López-Calahorra *Synth. Commun.* 2010, 40, 1822. c) X.-Q. Tang. C.-M. Hu J. Chem. Soc., Chem. Commun. 1994, 631. d) H.-P. Guan, X.-Q. Tang, B.-H. Luo, C.-M. Hu Synthesis 1997, 1489.
- 22. a) X. Fang, X. Yang, X. Yang, S Mao, Z. Wang, G. Chen, F. Wu *Tetrahedron* 2007, 63, 10684. b) Z.-Y. Long, Q.-Y. Chen *Tetrahedron Lett.* 1998, 39, 8487. c)
 A.-R. Li, Q.-Y. Chen *Synthesis* 1997, 333.
- 23. Y. Li, H. Li, J. Hu Tetrahedron 2009, 65, 478.
- 24. a) S. Ma, Z. Lu Adv. Synth. Catal. 2006, 348, 1894. b) Z. Lu, S. Ma J. Org. Chem.
 2006, 71, 2655.
- 25. a) S. Ma, Acc. Chem. Res. 2009, 42, 1679. b) J. Luis G. Ruano, V. Marcos, J. Alemén Angew. Chem. Int. Ed. 2009, 48, 3155. c) R. W. Friesen, C. Vanderwal J. Org. Chem. 1996, 61, 9103.

- 26. a) J. Yang, S. K. Rallapalli, J. M. Cook *Tetrahedron Lett.* 2010, **51**, 815. b) W. R.
 Bowman, C. F. Bridge, P. Brookes, M. O. Cloonan, D. C. Leach *J. Chem. Soc.*, *Perkin Trans. 1*, 2002, 58. c) W. Yin, M. S. Kabir, Z. Wang, S. K. Rallapalli, J.
 Ma, J. M. Cook *J. Org. Chem.* 2010, **75**, 3339.
- 27. D. Zhang, C. Yuan Eur. J. Org. Chem. 2007, 3916.
- 28. Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc. 2003, 125, 4817.
- 29. Zhou, C.; Fang, Z.; Fu, C.; Ma. S. J. Org. Chem. 2009, 74, 2887.
- 30. Wang, M.; Fu, C.; Ma, S. Adv. Synth. Catal. 2011, 353, 1775.
- Mukai, C.; Kobayashi, M.; Kubota, S.; Takahashi, Y.; Kitagaki, S. J. Org. Chem.
 2004, 69, 2128.
- 32. Antonioletti, R.; D'Auria, M.; Piancatelli, G.; Scettri, A. *Tetrahedron Lett.* 1981,
 22, 1041.
- 33. Prabhu, R. K.; Sivanand, S.; Chandrasekaran, S. Angew. Chem. Int. Ed. 2000, 39, 4316.

¹H/¹³C NMR Spectra of These Compounds

ì,

1

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs Int	Rel Int
49	92.05	7037	3.05	106	155.20	1682	0.73
50	92.80	3062	1.33	107	156.10	1460	0.63
51	93.85	1158	0.50	108	158.05	3426	1.49
52	94.90	2663	1.15	109	159.00	7126	3.09
53	96.05	1743	0.76	110	160.10	5026	2.18
54	97.05	2673	1.16	111	161.05	21761	9.43
55	99.15	438	0.19	112	162.10	16521	7.16
56	100.10	1135	0.49	113	163.05	166187	72.05
57	101.05	3509	1.52	114	164.10	21974	9.53
58	102.05	11092	4.81	115	165.05	18209	7.89
59	103.10	12632	5.48	116	165.95	2428	1.05
60	104.15	1368	0.59	117	167.10	2098	0.91
61	105.10	1740	0.75	118	168.00	2297	1.00
62	107.05	1043	0.45	119	169.00	1162	0.50
63	108.00	5351	2.32	120	171.05	12255	5.31
64	109.05	5416	2.35	121	172.05	10970	4.76
65	110.05	1351	0.59	122	173.10	7151	3.10
66	110.95	1202	0.52	123	174.05	2384	1.03
67	113.15	3486	1.51	124	175.10	4140	1.79
68	114.10	3663	1.59	125	175.90	2390	1.04
69	115.05	54617	23.68	126	176.95	3146	1.36
70	116.10	11231	4.87	127	178.05	3260	1.41
71	117.05	6151	2.67	128	179.10	1817	0.79
72	119.10	1254	0.54	129	180.00	1078	0.47
73	121.00	12289	5.33	130	183.10	1188	0.52
74	122.00	2799	1.21	131	184.10	5097	2.21
75	123.00	5359	2.32	132	184.95	4875	2.11
76	124.20	1153	0.50	133	186.05	2616	1.13
77	126.15	2894	1.25	134	187.05	15263	6.62
78	127.10	13484	5.85	135	188.05	3022	1.31
/9	128.10	40850	17.71	136	189.00	11999	5.20
80	129.10	35886	15.56	137	190.05	2718	1.18
81	130.10	32222	13.97	138	191.00	23254	10.08
82	131.10	8414	3.65	139	192.00	3372	1.46
83	132.05	1809	0.78	140	193.05	11455	4.97
84	133.05	12014	5.47	141	194.05	2080	0.90
86	134.05	190976	27.57	142	199.00	2108	0.91
80	135.10	20002	02.32	145	201.05	10021	4.60
89	137.00	0234	4.00	144	201.90	1422	0.69
80	137.00	1263	4.00	145	203.00	1425	0.62
00	130.10	5103	2.21	140	204.00	1470	0.64
91	140.05	1323	0.57	148	205.00	2640	1.14
92	141.00	4500	1.99	140	207.05	2040	0.10
93	142.10	3185	1.38	150	208.00	80	0.03
94	143.10	3226	1.40	151	215.00	1102	0.05
95	144.05	1543	0.67	152	217.15	1953	0.85
96	145.00	4942	2.14	153	218.05	1358	0.59
97	146.15	3274	1.42	154	219.05	108261	46.94
98	147.05	53878	23.36	155	220.05	20638	8.95
99	148.00	15172	6.58	156	221.05	230655	100.00
100	149.05	9950	4.31	157	222.00	38194	16.56
101	150.15	2605	1.13	158	223.00	14209	6.16
102	151.05	5952	2.58	159	224.00	1844	0.80
103	152.05	6198	2.69	160	230.10	11598	5.03
104	153.20	4924	2.13	161	231.10	3252	1.41
105	154.00	2022	0.88	162	232.20	2740	1.19

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
163	246.10	2492	1.08	166	250.10	70249	30.46
164	248.10	34866	15.12	167	251.10	13151	5.70
165	249.10	7194	3.12	168	252.05	3286	1.42

The relative abundances of 221 [M (¹⁸O)-Et]⁺, 219 [M (¹⁶O)-Et]⁺ are 100, 46.94.

(100-46.94*4.5%)/(100-46.94*4.5%+46.94)=67.59%

$C_{13} H_{15} S {}^{16}O$
Chemical Formula: C ₁₃ H ₁₅ ¹⁶ OS
Exact Mass: 219.0844
Molecular Weight: 219.3181
m/z: 219.0844 (100.0%), 220.0877 (14.1%), 221.0802
(4.5%)
Elemental Analysis: C, 71.19; H, 6.89; O, 7.29; S, 14.62
C ₁₃ H ₁₅ S ¹⁸ O
Chemical Formula: C ₁₃ H ₁₅ ¹⁸ OS
Exact Mass: 221.0886
Molecular Weight: 221.3224
m/z: 221.0886 (100.0%), 222.0920 (14.1%), 223.0844
(4.5%)
Elemental Analysis: C, 70.55; H, 6.83; O, 8.13; S, 14.49

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
49	117.00	2646	3.36	81	173.00	2876	3.65
50	121.10	2556	3.25	82	174.95	3229	4.10
51	127.10	3913	4.97	83	176.05	3123	3.97
52	128.10	13116	16.66	84	184.05	2013	2.56
53	129.10	7420	9.42	85	185.00	2326	2.95
54	130.10	7855	9.98	86	186.00	1046	1.33
55	131.10	1459	1.85	87	187.05	7674	9.75
56	133.05	3721	4.73	88	188.05	2192	2.78
57	134.05	19661	24.97	89	189.00	13414	17.04
58	135.05	78737	100.00	90	190.10	2505	3.18
59	136.10	9250	11.75	91	191.05	1856	2.36
60	137.05	3883	4.93	92	192.00	1046	1.33
61	139.05	1361	1.73	93	201.00	5142	6.53
62	141.15	1658	2.11	94	202.00	1442	1.83
63	143.30	1596	2.03	95	203.05	1343	1.71
64	145.00	1660	2.11	96	204.05	2627	3.34
65	146.05	2009	2.55	97	206.95	2075	2.64
66	147.10	15542	19.74	98	208.05	1334	1.69
67	148.15	3293	4.18	99	209.00	1340	1.70
68	149.05	3191	4.05	100	216.95	1882	2.39
69	152.15	2160	2.74	101	218.05	1752	2.23
70	153.15	1847	2.35	102	219.00	35776	45.44
71	153.90	1916	2.43	103	220.05	5428	6.89
72	159.10	1596	2.03	104	221.05	2876	3.65
73	159.90	1506	1.91	105	230.10	5999	7.62
74		14187	18.02	106	231.10	1801	2.29
75	162.15	7965	10.12	107	232.15	1869	2.37
76	163.05	77181	98.02	108	246.00	2633	3.34
77	164.10	9929	12.61	109	248.10	17280	21.95
78	165.10	4796	6.09	110	249.10	3490	4.43
79	170.95	4774	6.06	111	250.25	1379	1.75
80	172.05	6300	8.00		-		

. .

The relative abundances of 221 [M (¹⁸O)-Et]⁺, 219 [M (¹⁶O)-Et]⁺ are 3.65, 45.44.

(3.65-45.44*4.5%)/(3.65-45.44*4.5%+45.44)=3.41%

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
49	84.05	141353	5.28	103	140.15	16981	0.63
50	85.05	585462	21.86	104	141.10	74871	2.80
51	86.10	57079	2.13	105	142.10	6230	0.23
52	87.10	320129	11.95	106	151.95	17304	0.65
53	88.05	18527	0.69	107	152.95	56198	2.10
54	89.05	5070	0.19	108	153.95	2668	0.10
55	90.15	3296	0.12	109	154.90	24849	0.93
56	91.05	88501	3.30	110	156.90	3012	0.11
57	92.10	26103	0.97	111	163.95	3314	0.12
58	93.10	101887	3.80	112	164.95	14662	0.55
59	94.15	19063	0.71	113	165.90	13516	0.50
60	95.10	187274	6.99	114	166.90	14455	0.54
61	96.10	84214	3.14	115	167.90	1527	0.06
62	97.10	1153552	43.07	116	168.95	11919	0.45
63	98.10	141585	5.29	117	169.90	1129	0.04
64	99.10	708745	26.46	118	170.85	5502	0.21
65	100.10	54879	2.05	119	178.95	12514	0.47
66	101.10	3617	0.14	120	179.95	14467	0.54
67	102.10	2049	0.08	121	180.95	661573	24.70
68	103.10	7673	0.29	122	181.90	38188	1.43
69	104.10	3097	0.12	123	182.90	24039	0.90
70	105.10	28997	1.08	124	183.90	1188	0.04
71	106.05	7262	0.27	125	184.90	1162	0.04
72	107.05	23044	0.86	126	192.85	1336	0.05
73	108.05	7277	0.27	127	193.80	3415	0.13
74	109.10	83071	3.10	128	194.95	3093	0.12
75	110.10	140406	5.24	129	195.90	3302	0.12
76	111.05	68747	2.57	130	196.90	1871	0.07
77	112.10	91570	3.42	131	205.95	2086	0.08
78	113.10	17340	0.65	132	206.95	2759	0.10
79	114.15	1850	0.07	133	207.95	29674	1.11
80	115.00	3558	0.13	134	208.90	2038230	76.11
81	116.10	1057	0.04	135	209.95	144752	5.41
82	117.15	2348	0.09	136	210.95	1373512	51.29
83	118.05	1526	0.06	137	211.90	90130	3.37
84	119.15	6605	0.25	138	212.90	2679	0.10
85	120.15	2802	0.10	139	222.95	12665	0.47
86	121.15	12652	0.47	140	223.95	1014487	37.88
87	122.15	19920	0.74	141	224.95	82010	3.06
88	123.05	13584	0.51	142	225.95	721593	26.94
89	124.15	9325	0.35	143	226.90	49569	1.85
90	125.10	9180	0.34	144	227.95	2184	0.08
91	125.95	8251	0.31	145	235.00	1177	0.04
92	126.90	103833	3.88	146	236.05	31688	1.18
93	127.95	45511	1.70	147	236.95	2450420	91.50
94	128.85	5403	0.20	148	237.95	229233	8.56
95	131.10	1033	0.04	149	238.95	1762487	65.81
96	133.10	320	0.01	150	239.90	142146	5.31
97	134.05	1098	0.04	151	240.90	5649	0.21
98	135.05	1036	0.04	152	265.05	1249	0.05
99	136.15	1239	0.05	153	266.00	36438	1.36
100	137.15	2801	0.10	154	267.00	8466	0.32
101	138.15	9082	0.34	155	268.00	24346	0.91
102	139.10	73847	2.76	156	268.90	5393	0.20

The relative abundances of 239 [M (18O)-Et]+, 237 [M (16O)-Et]+ are 65.81, 91.50.

 $\frac{[M (^{18}O)-Et]^+}{[M (^{18}O)-Et]^+ + [M (^{16}O)-Et]^+} = \frac{65.81}{65.81+91.50} = 41.835\%$

$$C_8 H_{10} I^{16} O$$

Chemical Formula: C₈H₁₀I¹⁶O Exact Mass: 248.9776 Molecular Weight: 249.0644 m/z: 248.9776 (100.0%), 249.9810 (8.7%) Elemental Analysis: C, 38.58; H, 4.05; I, 50.95; O, 6.42

 $C_8 H_{10} I^{18} O$

Chemical Formula: C₈H₁₀I¹⁸O Exact Mass: 250.9819 Molecular Weight: 251.0686 m/z: 250.9819 (100.0%), 251.9852 (8.7%) Elemental Analysis: C, 38.27; H, 4.01; I, 50.55; O, 7.17

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
49	85.05	532319	16.50	89	140.95	20323	0.63
50	86.10	34099	1.06	90	151.90	10855	0.34
51	87.00	3935	0.12	91	152.90	33878	1.05
52	89.05	2703	0.08	92	153.95	2654	0.08
53	90.15	1479	0.05	93	154.90	18852	0.58
54	91.05	45800	1.42	94	163.85	2411	0.07
55	92.10	15506	0.48	95	164.90	8772	0.27
56	93.10	56910	1.76	96	165.95	7192	0.22
57	94.10	16002	0.50	97	166.95	8590	0.27
58	95.05	174018	5.39	98	167.95	1522	0.05
59	96.10	69404	2.15	99	168.90	10226	0.32
60	97.05	1155444	35.80	100	178.95	8632	0.27
61	98.05	86844	2.69	101	179.95	7847	0.24
62	99.00	5462	0.17	102	180.95	472019	14.63
63	103.05	4027	0.12	103	181.95	28741	0.89
64	104.15	1592	0.05	104	182.90	1562	0.05
65	105.10	13620	0.42	105	192.80	1409	0.04
66	106.05	3988	0.12	106	193.85	3769	0.12
67	107.10	6761	0.21	107	194.90	2466	0.08
68	108.10	5105	0.16	108	195.85	1325	0.04
69	109.10	64631	2.00	109	205.75	1621	0.05
70	110.10	133284	4.13	110	206.95	2903	0.09
71	111.10	22759	0.71	111	207.95	31324	0.97
72	111.90	1530	0.05	112	208.90	2702919	83.76
73	114.80	1393	0.04	113	209.90	178177	5.52
74	117.30	1318	0.04	114	210.85	11772	0.36
75	119.00	2937	0.09	115	220.90	1726	0.05
76	120.15	1036	0.03	116	221.95	1031	0.03
77	121.10	7306	0.23	117	222.95	15165	0.47
78	122.10	2690	0.08	118	223.90	1375593	42.63
79	123.15	8950	0.28	119	224.90	104665	3.24
80	124.10	8681	0.27	120	225.85	6547	0.20
81	125.95	1925	0.06	121	234.95	1205	0.04
82	126.90	62526	1.94	122	235.95	23282	0.72
83	127.95	29915	0.93	123	_236.95	3227123	100.00
84	128.90	2356	0.07	124	237.90	294095	9.11
85	137.15	1325	0.04	125	238.90	17948	0.56
86	138.15	4412	0.14	126	265.05	1006	0.03
87	139.10	65801	2.04	127	266.00	38471	1.19
88	139.90	7145	0.22	128	267.05	5884	0.18

The relative abundances of 239 [M (18O)-Et]+, 237 [M (16O)-Et]+ are 0.56, 100.

[M (¹⁸ O)-Et] ⁺	0.56	0.5570/
$[M (^{18}O)-Et]^{+} + [M (^{16}O)-Et]^{+}$	0.56 + 100 =	0.557%

140 - 137.639 - 134.282 - 130.325 - 129.020 - 127.032 120 - 120.064 PTS1d = 32768 F1 = 75.476807 MHz F2 = 1.000000 MHz wmy-6-44 spect, SOLVENT JSER ue Oct 16 12:10:59 2012 100 Ise Cycle CDCI3 ueray = = zgpg30 h = 9.500 9.500 usec 2.000 sec Ph. 80 77.420 77.000 76.578 74.152 E-2a-180 щ HOBI 60 41.328 4 30.931 29.919 - 22.150 20 • - 13.837 9.493 0 PPM Į

Sample Information E:\msm\wmy-6-44_2012-10-18_6.qgd

Mass Table Line#:1 R.Time:6.5(Scan#:1346) MassPeaks:116 RawMode:Single 6.5(1346) BasePeak:141(186299) BG Mode:6.4(1325) Group 1 - Event 1 # m/z Abs. Int. Rel. Int.

m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
38.05	1595	0.86	25	68.00	2226	1.19
39.00	12774	6.86	26	69.05	9126	4.90
40.05	2932	1.57	27	69.95	3281	1.76
41.10	24544	13.17	28	70.95	4042	2.17
42.05	2041	1.10	29	73.05	1826	0.98
43.10	9028	4.85	30	74.00	1222	0.66
45.05	9990	5.36	31	75.05	2030	1.09
50.15	2544	1.37	32	76.10	1017	0.55
51.10	5382	2.89	33	77.10	14061	7.55
52.05	2808	1.51	34	78.10	3552	1.91
53.05	5742	3.08	35	79.05	10647	5.72
54.05	1750	0.94	36	80.05	3133	1.68
55.00	11635	6.25	37	81.00	12640	6.78
56.00	858	0.46	38	82.15	3188	1.71
57.05	14565	7.82	39	83.10	3174	1.70
58.00	2681	1.44	40	84.05	3583	1.92
59.05	27640	14.84	41	85.10	3046	1.64
60.10	1996	1.07	42 .	86.15	1097	0.59
60.95	4080	2.19	43	86.95	1285	0.69
63.00	3135	1.68	44	91.10	10682	5.73
64.05	1198	0.64	45	92.05	1363	0.73
65.10	14506	7.79	46	93.10	6918	3.71
66.00	7816	4.20	47	94.05	1008	0.54
67.05	9281	4.98	48	95.05	2511	1.35
	m/z 38.05 39.00 40.05 41.10 42.05 43.10 45.05 50.15 51.10 52.05 53.05 54.05 55.00 56.00 57.05 58.00 59.05 60.10 60.95 63.00 64.05 65.10 66.00 67.05	$\begin{array}{cccc} m/z & Abs. Int. \\ 38.05 & 1595 \\ 39.00 & 12774 \\ 40.05 & 2932 \\ 41.10 & 24544 \\ 42.05 & 2041 \\ 43.10 & 9028 \\ 45.05 & 9990 \\ 50.15 & 2544 \\ 51.10 & 5382 \\ 52.05 & 2808 \\ 53.05 & 5742 \\ 54.05 & 1750 \\ 55.00 & 11635 \\ 56.00 & 858 \\ 57.05 & 14565 \\ 58.00 & 2681 \\ 59.05 & 27640 \\ 60.10 & 1996 \\ 60.95 & 4080 \\ 63.00 & 3135 \\ 64.05 & 1198 \\ 65.10 & 14506 \\ 66.00 & 7816 \\ 67.05 & 9281 \\ \end{array}$	m/zAbs. Int.Rel. Int. 38.05 1595 0.86 39.00 12774 6.86 40.05 2932 1.57 41.10 24544 13.17 42.05 2041 1.10 43.10 9028 4.85 45.05 9990 5.36 50.15 2544 1.37 51.10 5382 2.89 52.05 2808 1.51 53.05 5742 3.08 54.05 1750 0.94 55.00 11635 6.25 56.00 858 0.46 57.05 14565 7.82 58.00 2681 1.44 59.05 27640 14.84 60.10 1996 1.07 60.95 4080 2.19 63.00 3135 1.68 64.05 1198 0.64 65.10 14506 7.79 66.00 7816 4.20 67.05 9281 4.98	m/zAbs. Int.Rel. Int.# 38.05 1595 0.86 25 39.00 12774 6.86 26 40.05 2932 1.57 27 41.10 24544 13.17 28 42.05 2041 1.10 29 43.10 9028 4.85 30 45.05 9990 5.36 31 50.15 2544 1.37 32 51.10 5382 2.89 33 52.05 2808 1.51 34 53.05 5742 3.08 35 54.05 1750 0.94 36 55.00 11635 6.25 37 56.00 858 0.46 38 57.05 14565 7.82 39 58.00 2681 1.44 40 69.05 27640 14.84 41 60.10 1996 1.07 42 60.95 4080 2.19 43 63.00 3135 1.68 44 64.05 1198 0.64 45 65.10 14506 7.79 46 66.00 7816 4.20 47 67.05 9281 4.98 48	m/zAbs. Int.Rel. Int.#m/z 38.05 15950.862568.00 39.00 127746.862669.05 40.05 29321.572769.95 41.10 2454413.172870.95 42.05 20411.102973.05 43.10 90284.853074.00 45.05 99905.363175.05 50.15 25441.373276.10 51.10 53822.893377.10 52.05 28081.513478.10 53.05 57423.083579.05 54.05 17500.943680.05 55.00 116356.253781.00 56.00 8580.463882.15 57.05 145657.823983.10 58.00 26811.444084.05 59.05 2764014.844185.10 60.10 19961.074286.15 60.95 40802.194386.95 63.00 31351.684491.10 64.05 11980.644592.05 65.10 145067.794693.10 66.00 78164.204794.05 67.05 92814.984895.05	m/zAbs. Int.Rel. Int.#m/zAbs. Int. 38.05 15950.862568.002226 39.00 127746.862669.059126 40.05 29321.572769.953281 41.10 2454413.172870.954042 42.05 20411.102973.051826 43.10 90284.853074.001222 45.05 99905.363175.052030 50.15 25441.373276.101017 51.10 53822.893377.1014061 52.05 28081.513478.103552 53.05 57423.083579.0510647 54.05 17500.943680.053133 55.00 116356.253781.0012640 56.00 8580.463882.153188 57.05 145657.823983.103174 58.00 26811.444084.053583 59.05 2764014.844185.103046 60.10 19961.074286.151097 60.95 40802.194386.951285 63.00 31351.684491.1010682 64.05 11980.644592.051363 65.10 145067.7946 <td< td=""></td<>

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
49	96.15	1298	0.70	83	149.05	3882	2.08
50	97.10	3940	2.11	84	150.15	1040	0.56
51	98.00	1906	1.02	85	151.10	1612	0.87
52	99.10	2291	1.23	86	155.05	1761	0.95
53	103.05	3396	1.82	87	160.95	2351	1.26
54	105.20	2643	1.42	88	164.90	1420	0.76
55	107.20	2406	1.29	89	166.95	1232	0.66
56	108.05	1875	1.01	90	173.05	1227	0.66
57	109.00	20987	11.27	91	174.00	1266	0.68
58	110.05	24060	12.91	92	175.00	4441	2.38
59	111.10	9134	4.90	93	177.10	1350	0.72
60	112.15	9925	5.33	94	189.20	2137	1.15
61	113.05	5874	3.15	95	189.95	1376	0.74
62	115.05	5880	3.16	96	190.85	2675	1.44
63	116.05	4154	2.23	97	191.90	1311	0.70
64	117.00	1535	0.82	98	193.20	1215	0.65
65	119.00	1516	0.81	99	203.05	2219	1 19
66	121.05	2863	1.54	100	209.10	2073	1.11
67	123.10	3711	1.99	101	220.85	1255	0.67
68	127.05	3221	1.73	102	221.85	1033	0.55
69	128.05	7495	4.02	103	231.00	1158	0.62
70	129.10	2719	1.46	104	235.90	1126	0.60
71	133.10	307	0.16	105	236.90	1010	0.54
72	134.05	3138	1.68	106	238.80	1062	0.57
73	135.10	3888	2.09	107	251.20	1580	0.85
74	135.95	1431	0.77	108	328.85	4961	2.66
75	137.00	1497	0.80	109	346.90	3058	1.64
76	139.10	50578	27.15	110	348.95	6631	3.56
77	140.15	9981	5.36	111	349.85	1068	0.57
78	141.15	186299	100.00	112	358.00	2905	1.56
79	142.15	20125	10.80	113	376.00	2239	1.20
80	142.95	2718	1.46	114	376.95	1435	0.77
81	147.05	2473	1.33	115	377.95	5714	3.07
82	148.05	2475	1.33	116	378.90	1810	0.97

Chemical Formula: C15H21I16OS

Exact Mass: 376.0358

Molecular Weight: 376.2961

m/z: 376.0358 (100.0%), 377.0391 (17.3%), 378.0316 (4.5%)

Elemental Analysis: C, 47.88; H, 5.63; I, 33.72; O, 4.25; S, 8.52

Chemical Formula: C15H21I18OS

Exact Mass: 378.0400

Molecular Weight: 378.2959

m/z: 378.0400 (100.0%), 379.0434 (17.0%), 380.0358 (4.6%)

Elemental Analysis: C, 47.62; H, 5.60; I, 33.55; O, 4.76; S, 8.48

The relative abundances of .378 [M (¹⁸O)]⁺, 376 [M (¹⁶O)]⁺ are 3.07, 1.20

(3.07-1.20*4.5%)/(3.07-1.20*4.5%+1.20)=71.54%

扫描 778 (6.243 分): WMY-4-40.D\data.ms

37.15	4085	93.15	171200	145.15	17608	196.05	4800	250.15	16105
39.15	322368	95.15	234304	147.05	263680	196.95	4717	251.15	6912
41.15	627840	96.15	42960	148.15	64408	199.05	6817	252.15	1772
43.15	369664	97.15	133632	149.05	261696	201.15	22408	252.95	1463
45.05	133120	98.15	23016	150.15	38344	202.15	37288	254.05	253
46.05	3963	99.05	20192	151.05	56616	203.15	69296	254.95	476
47.05	13652	100.05	13292	152.15	11997	204.15	13782	256.15	433
47.95	406	101.05	34808	$153.\ 15$	17776	205.15	16146	256.85	861
50.15	51920	102.15	31488	154.15	10932	206.15	13225	258.05	253
51.15	219392	103.15	124952	155.05	27264	207.15	24728	259.85	417
52.15	59472	104.15	22048	156.15	16245	208.15	4246	260.95	394
53.15	237120	105.15	129480	157.15	19816	208.95	9091	262.95	601
55.15	473728	106.15	19064	158.05	11717	210.95	9295	265.05	2413
57.15	1257984	107.15	35536	159.15	12637	212.95	14839	265.95	720
58.15	83744	109.05	974592	160.05	38840	214.05	1364	267.05	2912
59.15	228672	110.05	1252352	161.05	74208	215.15	9105	268.95	14211
60.15	11887	111.05	356416	163.05	83624	216.15	4334	269.95	1461
61.05	10838	112.05	68304	164.05	19696	217.15	2800	270.85	950
62.25	11654	113.05	51264	165.05	30616	219.15	77456	272.95	39640
63.15	51744	115.15	208128	166.95	65456	220.15	80280	273.95	4059
65.15	435584	116.15	186816	168.15	7201	221.15	16440	274.95	3230
66.15	252160	117.15	44952	169.05	15217	222.15	4625	276.05	2800
67.15	231936	118.15	6768	171.05	26856	223.05	4018	276.95	903
68.15	107624	119.15	15331	172.15	16239	224.15	1670	278.05	302
69.05	331008	121.05	111472	173.05	54008	225.05	1914	278.95	3745
70.15	37800	123.05	147136	174.15	19200	226.05	1406	280.05	608
71.05	162432	124.15	19056	175.05	103440	226.95	1739	281.05	1148
72.05	16744	125.05	22264	176.15	27384	228.05	326	281.95	462
73.05	27400	127.05	49728	177.05	88880	229.15	3360	282.55	188
74.05	16776	128.05	100160	178.05	25144	231.15	75688	283.15	255
75.15	22504	129.15	81264	179.05	18512	232.15	16552	285.95	1772
77.15	503680	130.15	20256	181.05	9196	233.15	5022	286.95	2324
78.15	122880	131.15	22864	182.95	13093	234.15	1201	288.15	552
79.15	399104	132.05	4539	184.15	6833	235.95	132864	289.05	3421
81.15	659392	134.05	151936	185.05	10438	236.95	31152	290.95	47184
82.15	131712	135.05	262720	186.15	7191	237.95	9993	291.95	5136
83.15	199488	136.05	38952	187.05	40784	238.95	2238	293.05	2273
84.05	93472	137.15	58088	188.15	24432	239.95	1055	294.05	306
85.05	122456	139.15	8388096	189.15	72976	240.95	1140	295.25	166
86.05	24496	140.15	1204224	190.15	42872	242.05	631	296.85	707
87.05	29336	141.15	112536	191.15	133504	242.95	755	298.05	304
89.05	35808	142.15	53272	192.15	59720	247.15	13853	299.05	2127
91.15	318848	$143.\ 15$	29144	193.05	31368	248.15	17408	299.95	813
92.15	55200	144.15	11928	194.95	25752	249.15	94552	301.05	1010

302.05	1062
303.05	1274
304 05	452
305.05	2887
305.05	538
307.05	250
007.00 011 15	209
010.05	189
313.05	2491
314.15	322
315.05	748
316.05	239
317.05	944
319.05	8138
320.05	1252
320.95	427
327.05	194
329.05	384384
330.05	57008
331.05	22776
332, 05	2685
333.05	368
334.05	8198
335.05	1142
336.05	305
343 05	261
345.05	11488
347.05	1103872
348 05	166226
240.05	62210
250.05	00012
330.03 251.05	0904
351.05	839
356.05	160
357.15	1594
358.05	11138
359.15	16408
360.05	2668
361.15	1581
361.95	295
371.55	179
374.05	459
376.15	930496
377.15	160448
378.05	57904
379.15	8180
380.05	771
381.15	205

The relative abundances of 378 [M (¹⁸O)]⁺, 376 [M (¹⁶O)]⁺ are 57904, 930496.

(57904-930496*4.5%)/(57904-930496*4.5%+930496)=1.69 %

#	m/z	Abs. Int.	Rel. Int.	#	m/z	Abs. Int.	Rel. Int.
49	84.10	66630	1.89	96	139.10	82162	2.33
50	85.05	792856	22.48	97	139.95	11041	0.31
51	86.05	40178	1.14	98	140.90	32946	0.93
52	87.05	15765	0.45	99	141.90	1068	0.03
53	88.15	1013	0.03	100	151.95	10727	0.30
54	89.05	2787	0.08	101	153.00	49119	1.39
55	90.15	1563	0.04	102	153.95	1821	0.05
56	91.05	72499	2.06	103	154.90	26022	0.74
57	92.05	17854	0.51	104	164.95	12131	0.34
58	93.10	90214	2.56	105	165.95	10754	0.30
59	94.05	17962	0.51	106	166.90	11417	0.32
60	95.05	255886	7.25	107	167.95	1818	0.05
61	96.10	110822	3.14	108	168.90	13305	0.38
62	97.10	2023430	57.36	109	178.90	12306	0.35
63	98.10	142425	4.04	110	179.95	10924	0.31
64	99.05	37005	1.05	111	180.90	598399	16.96
65	100.10	2482	0.07	112	181.90	37036	1.05
66	101.95	1071	0.03	113	182.90	2226	0.06
67	103.00	7794	0.22	114	190.00	1215	0.03
68	104.15	2862	0.08	115	192.95	1414	0.04
69	105.05	27011	0.77	116	193.90	4959	0.14
70	106.15	7482	0.21	117	194.75	2623	0.07
71	107.10	12748	0.36	118	195.80	1612	0.05
72	108.10	7398	0.21	119	205.90	2233	0.06
73	109.10	117465	3.33	120	206.95	4840	0.14
74	110.10	262706	7.45	121	207.95	28953	0.82
75	111.10	41599	1.18	122	208.90	2915078	82.64
76	112.15	7876	0.22	123	209.95	159771	4.53
77	113.10	1055	0.03	124	210.95	51225	1.45
78	115.10	2662	0.08	125	211.95	2069	0.06
79	117.10	1932	0.05	126	219.00	1689	0.05
80	118.05	1068	0.03	127	220.95	1937	0.05
81	119.10	7148	0.20	128	222.95	12195	0.35
82	120.05	2747	0.08	129	223.90	1516479	42.99
83	121.10	13369	0.38	130	224.95	91091	2.58
84	122.05	5611	0.16	131	225.95	24206	0.69
85	123.10	18546	0.53	132	227.00	1234	0.03
86	124.00	11148	0.32	133	235.95	20391	0.58
87	124.95	1546	0.04	134	236.95	3527637	100.00
88	125.95	2301	0.07	135	237.95	264180	7.49
89	126.95	83664	2.37	136	238.95	64847	1.84
90	127.90	57081	1.62	137	239.90	4953	0.14
91	129.10	3705	0.11	138	265.05	1775	0.05
92	133.45	1607	0.05	139	266.00	40806	1.16
93	136.30	2098	0.06	140	267.00	9407	0.27
94	137.15	1351	0.04	141	267.95	1340	0.04
95	138.10	9439	0.27				

The relative abundances of 239 [M (18O)-Et]+, 237 [M (16O)-Et]+ are 1.84, 100

$$\frac{[M (^{18}O)-Et]^{+}}{[M (^{18}O)-Et]^{+} + [M (^{16}O)-Et]^{+}} = \frac{1.84}{1.84 + 100} = 1.81\%$$

_

