Cleavage of Oxygen-Sulfur Double Bond and Carbon-Sulfur Bond: Unnatural Highly Selective Electrophilic Addition of Allenylic Sulfoxides

Minyan Wang, Chunling Fu, and Shengming Ma*
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China

Fax: (+86) 21-62609305;
E-mail: masm@mail.sioc.ac.cn

Supporting Information

Table of Conents

General Information	S3
The Known Methods for the Synthesis of Enones or Enals	S3-S4
The Known Methods for the Synthesis of α-Iodoallylic Alcohols	S4-S6
Supplementary Table S1-S4	S7-S9
Preparation of Starting 1,2-Allenylic Sulfoxides 1c, 1d, and 11	S9-S12
Preparation of Starting 1,2-Allenylic Sulfoxides 1e, 1f, and 1g	S12-S15
The Reaction of 1,2-Allenylic Sulfoxide 1a Affording E-2a	S15-S16
Preparation of Z-1-Iodo-1-alkenyl Ketones Z-3a-Z-3f	S16-S21
Preparation of 2-Iodo-2-enals with the Same Substituents at the 3-Position 3h-3k	S22-S24
Preparation of Z-2-Iodo-2-enals Z-31-Z-3o	S24-S27
Preparation of E-2-Iodo-3-phenyl-2-enals E-3p-E-3q	S27-S29
The Reaction of 3 with 2,4- Dinitrophenylhydrazine Affording 4	S29-S31
The Synthetic Application of the Z-3a Affording 5-6	S31-S33
Experiments for Mechanistic Study	S33-S43
References	S43-S46
${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Spectra of These Compounds	S47-S131

General Information:

Anhydrous CHCl_{3} was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under reflux for 5 hours and distilled before use. Commercial anhydrous EtOH was used. $\mathrm{Et}_{3} \mathrm{~N}$ was dried over KOH and distilled freshly before use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over CaH_{2} under reflux for 3 hours and distilled before use. THF was dried over sodium wire with benzophenone as indicator and distilled freshly before use. The petroleum ether $\left(30-60^{\circ} \mathrm{C}\right)$ for chromatography was distilled before use. Other reagents were used without further treatment.

The known methods for the synthesis of enones or enals:

Transition metal-catalyzed hydroacylation of alkynes with aldehydes or alcohols usually affords E / Z mixtures of α, β-enones together with an issue of regioselectivity referring to the alkynes. ${ }^{1-4}$ When Lewis acids were used in such transformations, $E / Z>99 / 1$ can be achieved only when the group of R^{1} is larger than the $\mathrm{R}^{2}{ }^{5}$ In addition, these methodologies are limited to incorporate substituents into the β position of the enones or enals. The Witting reaction between ylides and aldehydes afforded Z / E mixtures. ${ }^{6-7}$ When $\mathrm{R}^{2}=$ quinolyl and $\mathrm{R}^{3}=\mathrm{H}$, the reaction could afford the enals with the ratio of E / Z up to $99 / 1 .{ }^{6}$ Isomerization of propargylic alcohols catalyzed by Ag, Au, and Ru complexes could also afford enones. ${ }^{8-10}$ However, poor E / Z ratio were observed and these methodologies cannot incorporate substituents into the α positions. The aldol addition between ketones and aldehydes is an efficient approach to α, β-unsaturated ketones, however, this methodology cannot be used
widely because of the regioselectivity arise from the unsymmetric ketones. ${ }^{11}$

$$
\begin{aligned}
& \mathrm{R}^{1}=\text { aryl, } \mathrm{R}^{3}=\mathrm{H}, E / Z=84 / 16 \sim 92 / 8 \\
& \text { only when } \mathrm{R}^{1}=\text { quinolyl, } \mathrm{R}^{3}=\mathrm{Ph}, E / Z=99 / 1 ;
\end{aligned} \text { ref. } 6 \text {. }
$$

Ag: $E / Z=46 / 54 \sim 79 / 21$
ref. 8
Au: $E / Z=63 / 37 \sim 93 / 7$;
refs. 9
only when $\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{13}-n, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ph}, E / Z=97 / 3$;

$$
\mathrm{R}^{1}=\mathrm{Bu}-n, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{Bu}-t, E / Z=97 / 3 .
$$

Ru: $E / Z=1 / 2 \sim 2 / 1$
refs. 10

Figure 1. The known methods for the synthesis of enones or enals

The known methods for the synthesis of α-iodoallylic alcohols:

1) 1.0 equiv. CuI, $25^{\circ} \mathrm{C}$

Refs. 24
$R^{1}=$ alkyl, aryl; $R^{2}=$ alkyl, aryl; $R^{3}=H, \mathrm{CH}_{3} \quad 90 / 10 \sim$ >99/1
stoichiometric amounts of reagent, stereoselectivity, and non-convenient temperature

Supplementary Table S1-S4:

Table S1. Effect of $\mathrm{H}_{2} \mathrm{O}$ or EtOH ${ }^{\text {a }}$

[^0]distilled), and anhydrous EtOH or $\mathrm{H}_{2} \mathrm{O}$ was treated with $\mathrm{I}_{2}(0.45 \mathrm{mmol})$ for 5 min at $40{ }^{\circ} \mathrm{C}$ followed by the addition of a solution of BnSH in $\mathrm{CHCl}_{3}(0.15 \mathrm{M}, 2 \mathrm{~mL}$, dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and distilled) with stirring. After being stirred for 30 min , the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $40{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. ${ }^{\text {c }} 64 \%$ of $E-2$ a was formed.

Table S2. Effect of temperature on the yield of Z-3a ${ }^{\text {a }}$

[^1]Table S3. Effect of the loading of $\mathbf{I}_{\mathbf{2}}$ on the reaction of nona-3,4-dien-5-ylphenyl sulfoxide 1a with I_{2} in the $\mathrm{BnSH}^{\text {a }}$

entry	I_{2} (equiv)	time (min)	yield of $Z-3 \mathbf{a}(\%)^{\mathrm{b}}$
1	1.0	30	28
2	2.0	30	62
3	2.5	15	70
4	3.0	15	76
$\mathbf{5}$	$\mathbf{3 . 5}$	$\mathbf{1 5}$	$\mathbf{8 1}$
6	4.0	15	80
7	5.0	15	80

[^2]Table S4. Concentration effect on the reaction of nona-3,4-dien-5-ylphenyl sulfoxide 1a with \mathbf{I}_{2} in the presence of $\mathbf{B n S H}{ }^{\text {a }}$

entry	$\mathrm{c}(\mathrm{mmol} / \mathrm{mL})$	time (min)	${\text { yield of } Z-3 \mathrm{aa}(\%)^{\mathrm{b}}}^{\text {b }}$
1	0.05	15	83
2^{c}	0.05	180	0
3	0.1	15	85
$\mathbf{4}$	$\mathbf{0 . 2}$	$\mathbf{1 5}$	$\left.\mathbf{8 9 (8 2}{ }^{\text {d }}\right)$
5^{e}	0.3	15	76

[^3]
Preparation of Starting 1,2-Allenylic Sulfoxides 1c, 1d, and 11

Synthesis of the starting materials: Compounds $\mathbf{1 a - b}, \mathbf{1 h}-\mathbf{o}$, and $\mathbf{1 q}-\mathbf{r}$ were prepared according to the known procedures ${ }^{28-30}$. Compounds $\mathbf{1 c}, \mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 g}$, and $\mathbf{1 p}$ were prepared as follows:

1. 2-Methylnona-3,4-dien-5-yl phenyl sulfoxide (1c) wmy-3-132

Typical Procedure ${ }^{28}$: To a dried three-neck round bottom flask were added 2-methylnon-4-yn-3-ol (1.5417 g, 10 mmol$), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and triethylamine $(1.55 \mathrm{~mL}, \mathrm{~d}=0.72 \mathrm{~g} / \mathrm{mL}, 1.116 \mathrm{~g}, 10 \mathrm{mmol})$ sequentially. After the mixture was cooled to $-68{ }^{\circ} \mathrm{C}$, a solution of sulfenyl chloride ($1.4531 \mathrm{~g}, 10 \mathrm{mmol}$) was added dropwise within 15 min . After being stirred at $-68{ }^{\circ} \mathrm{C}$ for another 15 min , methyl iodide ($0.3 \mathrm{~mL}, \mathrm{~d}=2.28 \mathrm{~g} / \mathrm{mL}, 0.684 \mathrm{~g}, 4.8 \mathrm{mmol}$) was added, then the resulting mixture was allowed to warm up naturally to room temperature followed by quenching with water (10 mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=15 / 1 \sim 8 / 1)$ of the crude product afforded $\mathbf{1 c}(1.3464$ $\mathrm{g}, 51 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68-7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.55-7.40$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 5.78-5.64(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 2.53-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.14(\mathrm{~m}, 1 \mathrm{H})$, 1.94-1.76 (m, 1 H$), 1.46-1.16\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.14-0.96\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$, $0.87-0.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.2,200.1,143.8,143.4$, $130.5,130.4,128.73,128.70,124.5,124.3,114.7,114.4,106.4,106.2,29.5,28.4$, 28.3, 22.7, 22.6, 22.3, 22.22, 22.19, 21.9, 13.6; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3058,2960,2930$, 2871, 1951, 1578, 1465, 1443, 1379, 1364, 1293, 1083, 1049, 1022; MS (70 eV, EI)
$m / z(\%) 262\left(\mathrm{M}^{+}, 1.30\right), 81$ (100); Anal. Cacld. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}: \mathrm{C}, 73.23, \mathrm{H}, 8.45$; Found: C, 72.93, H, 8.46.

The following compounds were prepared according to this Typical Procedure.

2. 1-Cyclohexylhepta-1,2-dien-3-yl phenyl sulfoxide (1d) wmy-3-182

The reaction of 1-cyclohexylhept-2-yn-1-ol (1.9414 g, 10 mmol), triethylamine (1.50 $\mathrm{mL}, \mathrm{d}=0.72 \mathrm{~g} / \mathrm{mL}, 1.08 \mathrm{~g}, 10.7 \mathrm{mmol})$, sulfenyl chloride ($1.4476 \mathrm{~g}, 10 \mathrm{mmol}$), and methyl iodide $(0.3 \mathrm{~mL}, \mathrm{~d}=2.28 \mathrm{~g} / \mathrm{mL}, 0.684 \mathrm{~g}, 4.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ afforded 1d (1.2546 g, 41\%) (eluent: petroleum ether / ethyl acetate $=20 / 1 \sim 10 / 1$): Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.56-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, 5.73-5.62 (m, $1 \mathrm{H},=\mathrm{CH}), 2.32-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.45-0.98(\mathrm{~m}, 9 \mathrm{H})$, $0.80\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.7$, 200.6, 143.9, $143.5,130.5,130.4,128.8,128.7,124.6,124.4,114.3,114.1,104.9,104.8,37.5,37.4$, $32.83,32.80,32.7,29.58,29.56,25.8,25.7,22.8,22.6,22.0,13.6$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 3057, 2956, 2926, 2852, 1950, 1584, 1475, 1444, 1082, 1049, 1022; MS (70 eV, EI) $m / z(\%) 303\left(\mathrm{M}^{+}+1,8.98\right), 302\left(\mathrm{M}^{+}, 3.07\right), 81$ (100); Anal. Cacld. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{OS}: \mathrm{C}$, 75.45, H, 8.66; Found: C, 75.45, H, 8.73.

3. 5-Phenylpenta-1,2-dienyl phenyl sulfoxide (11)

The reaction of 5-phenylpent-1-yn-3-ol ($1.6165 \mathrm{~g}, 10.1 \mathrm{mmol}$), triethylamine (1.50 $\mathrm{mL}, \mathrm{d}=0.72 \mathrm{~g} / \mathrm{mL}, 1.08 \mathrm{~g}, 10.7 \mathrm{mmol})$, sulfenyl chloride $(1.4631 \mathrm{~g}, 10.1 \mathrm{mmol})$, and methyl iodide $(0.3 \mathrm{~mL}, \mathrm{~d}=2.28 \mathrm{~g} / \mathrm{mL}, 0.684 \mathrm{~g}, 4.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ afforded $\mathbf{1 l}(1.5727 \mathrm{~g}, 58 \%)$ (eluent: petroleum ether $/$ ethyl acetate $\left.=20 / 1 \sim 10 / 1\right)$: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.51-7.36 (m, $3 \mathrm{H}, \mathrm{ArH})$, 7.34-7.21 (m, $2 \mathrm{H}, \mathrm{ArH})$, 7.21-7.04 (m, $3 \mathrm{H}, \mathrm{ArH}$), 6.08-5.90 (m, $1 \mathrm{H},=\mathrm{CH})$, 5.77-5.62 (m, $1 \mathrm{H},=\mathrm{CH})$, 2.79-2.56 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.50-2.24 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.6,203.4,144.6,144.5$, $140.42,140.38,130.8,129.0,128.3,128.2,126.1,126.0,124.0,123.9,102.9,98.4$, 98.3, 34.6, 29.7, 29.5; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3060,3026,2923,2856,1748,1603,1581$, 1496, 1475, 1454, 1443, 1304, 1083, 1046; MS (70 eV, EI) $m / z(\%) 268\left(\mathrm{M}^{+}, 1.01\right)$, 91 (100); Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{OS}: \mathrm{C}, 76.08, \mathrm{H}, 6.01$; Found: C, 75.76, H, 6.05.

Typical Procedure ${ }^{31}$: To a dried three-neck round bottom flask were added dec-3-yn-5-ol ($0.8412 \mathrm{~g}, 5.0 \mathrm{mmol}$), THF (10 mL), and triethylamine $(1.0 \mathrm{~mL}, \mathrm{~d}=$ $0.72 \mathrm{~g} / \mathrm{mL}, 0.72 \mathrm{~g}, 7.1 \mathrm{mmol}$) sequentially. After the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, a solution of sulfenyl chloride ($1.0117 \mathrm{~g}, 7.0 \mathrm{mmol}$) was added dropwise in 2 min . After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 hours, water $(10 \mathrm{~mL})$ was added to quench the reaction. Then the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=20 / 1$) of the crude product afforded $\mathbf{1 e}$ $(0.9534 \mathrm{~g}, 73 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 5.81-5.66 (m, $1 \mathrm{H},=\mathrm{CH}), 2.36-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.23(\mathrm{~m}, 6 \mathrm{H})$, $1.03-0.82\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.51,201.48,143.9$, $143.6,130.6,130.5,128.89,128.85,124.5,124.4,115.0,114.9,99.8,99.6,31.25$, $31.20,28.70,28.67,22.42,22.39,16.42,16.37,14.01,13.98,12.0$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 3056, 2959, 2930, 2857, 1953, 1578, 1474, 1458, 1443, 1378, 1299, 1085, 1048; MS (70 eV, EI) $m / z(\%) 263\left(\mathrm{M}^{+}+1,3.66\right), 262\left(\mathrm{M}^{+}, 17.37\right), 191$ (100); Anal. Cacld. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}: \mathrm{C}, 73.23, \mathrm{H}, 8.45$; Found: C, 72.90, H, 8.52.

2. 6-Phenylhexa-2,3-dien-2-yl phenyl sulfoxide (1f) wmy-4-154

The reaction of 1-phenylhex-4-yn-3-ol $(0.8707 \mathrm{~g}, 5.0 \mathrm{mmol})$, triethylamine (1.0 mL , $\mathrm{d}=0.72 \mathrm{~g} / \mathrm{mL}, 0.72 \mathrm{~g}, 7.1 \mathrm{mmol})$, and sulfenyl chloride ($1.0214 \mathrm{~g}, 7.1 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ afforded $\mathbf{1 f}(0.6898 \mathrm{~g}, 49 \%)$ (eluent: petroleum ether / ethyl acetate $=20 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.64-7.55 (m, $\left.1 \mathrm{H}, \mathrm{ArH}\right), 7.55-7.24(\mathrm{~m}, 6$ H, ArH), 7.24-7.12 (m, $3 \mathrm{H}, \mathrm{ArH}), 5.76-5.56(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 2.86-2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.57-2.35 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.70-1.57 (m, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.12, 202.09, 143.6, 143.4, 140.8, 140.7, 130.72, 130.70, 129.0, 128.54, 128.47, $126.25,126.16,124.44,124.38,108.8,108.6,97.0,96.7,35.1,35.0,30.4,30.0,9.4 ;$ IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3060,3026,2920,2856,1956,1603,1580,1496,1474,1453,1443$, 1389, 1090, 1048, 1011; MS (70 eV, EI) $m / z(\%) 283\left(\mathrm{M}^{+}+1,3.58\right), 282\left(\mathrm{M}^{+}, 16.45\right)$, 177 (100); Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{OS}: \mathrm{C}, 76.56, \mathrm{H}, 6.42$; Found: C, 76.77, H, 6.34.

3. 2,2-Dimethylnona-3,4-dien-3-yl phenyl sulfoxide (1g) wmy-4-97

The reaction of 2,2-dimethylnon-3-yn-5-ol ($1.6809 \mathrm{~g}, 10 \mathrm{mmol}$), triethylamine $(1.70 \mathrm{~mL}, \mathrm{~d}=0.72 \mathrm{~g} / \mathrm{mL}, 1.224 \mathrm{~g}, 12.1 \mathrm{mmol})$, and sulfenyl chloride $(1.7347 \mathrm{~g}, 12$ $\mathrm{mmol})$ in THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$ afforded $\mathbf{1 g}(1.7428 \mathrm{~g}, 63 \%)$ (eluent: petroleum ether / ethyl acetate $=20 / 1 \sim 10 / 1):$ Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.53(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 7.53-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}),[5.51(\mathrm{t}, J=6.9 \mathrm{~Hz}, 0.58 \mathrm{H},=\mathrm{CH}), 5.22(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 0.45 \mathrm{H},=\mathrm{CH})$], $1.96\left(\mathrm{q}, J=6.8 \mathrm{~Hz}\right.$, one proton in $\left.\mathrm{CH}_{2}\right), 1.60(\mathrm{q}, J=6.8 \mathrm{~Hz}$, one proton in CH_{2}), 1.36-1.22 (m, $\left.11 \mathrm{H}, 3 \times \mathrm{CH}_{3}+\mathrm{CH}_{2}\right)$, 1.22-1.10 $(\mathrm{m}, 1 \mathrm{H}$, one proton in $\left.\mathrm{CH}_{2}\right), 1.04-0.91\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton in $\left.\mathrm{CH}_{2}\right),[0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.69 \mathrm{H}$, $\left.\left.\mathrm{CH}_{3}\right), 0.79\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.75 \mathrm{H}, \mathrm{CH}_{3}\right)\right] ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.3,199.6$, $144.6,144.5,130.34,130.27,128.5,126.5,125.5,125.0,124.7,100.1,99.9,35.3$, $35.1,31.0,30.5,30.1,29.9,28.1,27.6,22.1,22.0,13.7,13.6$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3059$, 2962, 2930, 2870, 1948, 1578, 1475, 1462, 1444, 1391, 1363, 1236, 1085, 1048; MS (70 eV, EI) $m / z(\%) 277\left(\mathrm{M}^{+}+1,1.79\right), 276\left(\mathrm{M}^{+}, 9.70\right), 163$ (100); Anal. Cacld. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OS}: \mathrm{C}, 73.86, \mathrm{H}, 8.75$; Found: C, 73.86, H, 8.89.

The Reaction of 1,2-Allenylic Sulfoxide 1a Affording

E-4-Iodo-5-phenylthio-4-nonen-3-ol (E-2a) wmy-4-40

A solution of 1a $(74.9 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was treated with $\mathrm{I}_{2}(115.2$ $\mathrm{mg}, 0.45 \mathrm{mmol}$) for 5 min at $40^{\circ} \mathrm{C}$ followed by the addition of a solution of BnSH ($37.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL})$ with stirring. After being stirred at for 30 min , the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $40{ }^{\circ} \mathrm{C}$. The mixture was extracted with ether $(20 \mathrm{~mL} \times$ 3) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether/ethyl acetate $=30 / 1$) afforded E-2a ($99.1 \mathrm{mg}, 87 \%$): Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.55(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.58-2.44\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one protone in $\left.\mathrm{CH}_{2}\right), 2.36-2.23(\mathrm{~m}, 1 \mathrm{H}$, one protone in CH_{2}), $2.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.76-1.42\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, 1.34-1.19 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 0.93-0.81 (m, $\left.6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $137.7,134.3,130.4,129.0,127.1,120.1,74.2,41.4,31.0,29.9,22.2,13.8,9.5$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3399,3072,3058,2959,2929,2872,2858,1582,1477,1460,1439$, 1379, 1327, 1099, 1058, 1023; MS (70 eV, EI) m/z (\%) 376 ($\mathrm{M}^{+}, 11.09$), 139 (100); HRMS (EI) Cacld for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{OSI}\left(\mathrm{M}^{+}\right): 376.0358$; Found: 376.0361 .

Preparation of Z-1-Iodo-1-alkenyl Ketones Z-3a-Z-3f

1. (Z)-4-Iodonon-3-en-5-one (Z-3a) wmy-3-83

A solution of $\mathbf{1 a}(74.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{CHCl}_{3}(1 \mathrm{~mL})$, and $\mathrm{EtOH}(30 \mu \mathrm{~L})$ was treated with $\mathrm{I}_{2}(267.2 \mathrm{mg}, 1.05 \mathrm{mmol})$ for 5 min at $40^{\circ} \mathrm{C}$ followed by the addition of a solution of BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ with stirring. After being stirred for 15 min at $40^{\circ} \mathrm{C}$, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{mL} \times 3$), washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether \sim petroleum ether/ether $=300 / 1$) afforded $Z-3 \mathrm{a}(66.1 \mathrm{mg}, 82 \%)$: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.83\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.49-2.37(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.69-1.56 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.44-1.23 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $0.92\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,152.9$, $111.9,37.4,31.4,27.0,22.2,13.8,11.9$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2960,2929,2872,1682$, 1604, 1461, 1379, 1290, 1248, 1170, 1121, 1085; MS (70 eV, EI) $m / z(\%) 266\left(\mathrm{M}^{+}\right.$, 1.19), 237 (100); HRMS (EI) Cacld for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 266.0168; Found: 266.0167.

A large scale reaction:

A solution of 1a $(7.4418 \mathrm{~g}, 30 \mathrm{mmol}), \mathrm{CHCl}_{3}(100 \mathrm{~mL})$, and $\mathrm{EtOH}(3 \mathrm{~mL})$ was treated with $\mathrm{I}_{2}(26.6772 \mathrm{~g}, 105 \mathrm{mmol})$ for 5 min at $40^{\circ} \mathrm{C}$, then a solution of $\mathrm{BnSH}(3.5$ $\mathrm{mL}, \mathrm{d}=1.06 \mathrm{~g} / \mathrm{mL}, 3.71 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ was added within 5 min .

After being stirred for 25 min at $40^{\circ} \mathrm{C}$, the mixture was quenched with 10 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether \sim petroleum ether/ether $=300 / 1)$ afforded $Z-3 \mathbf{a}(6.1528 \mathrm{~g}, 77 \%)$.

The following compounds were prepared according to this procedure.

2. (Z)-3-Iodo-1-phenyloct-2-en-4-one (Z-3b) wmy-3-170

The reaction of $\mathbf{1 b}(93.1 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ (266.6 mg, 1.05 mmol), and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ with stirring for 30 min afforded $Z-\mathbf{3 b}(63.8 \mathrm{mg}, 65 \%)$ (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=100 / 1$): Oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.80\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 1.68-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.42-1.23$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.9$, 149.7, 137.1, 128.8, 128.6, 126.9, 113.1, 44.2, 37.5, 26.9, 22.2, 13.8; IR (neat) v
$\left(\mathrm{cm}^{-1}\right) 3063,3027,2957,2926,2867,1682,1598,1495,1453,1251,1145,1100 ; \mathrm{MS}$ (70 eV, EI) $m / z(\%) 328\left(\mathrm{M}^{+}, 20.68\right), 57(100)$; HRMS (EI) Cacld for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 328.0324; Found: 328.0329.

3. (Z)-4-Iodo-2-methylnon-3-en-5-one (Z-3c) wmy-4-7

The reaction of $\mathbf{1 c}(79.1 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ (267.4 mg, 1.05 mmol), and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ with stirring for 20 min afforded $Z-3 \mathrm{c}(70.6 \mathrm{mg}, 83 \%, 99.3 \%$ purity) (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}), 2.92-2.77\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{COCH}_{2}+\mathrm{CH}\right), 1.77-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.23(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.12\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 195.1,157.1,109.6,37.5,37.3,27.0,22.2,20.7,13.8$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2960,2931,2870,1682,1602,1465,1412,1382,1363,1329,1267$, 1166, 1128, 1086; MS (70 eV, EI) $m / z(\%) 280\left(\mathrm{M}^{+}, 0.76\right), 237$ (100); HRMS (EI) Cacld for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 280.0324; Found: 280.0317 .

The reaction of $\mathbf{1 d}(90.4 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ (267.3 mg, 1.05 mmol), and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ with stirring for 30 min afforded Z-3d ($62.0 \mathrm{mg}, 65 \%, 96.8 \%$ purity) (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}), 2.80\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.60-2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.87-1.52(\mathrm{~m}, 7$ H), $1.50-1.13(\mathrm{~m}, 7 \mathrm{H}), 0.92\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $195.2,155.7,109.9,46.7,37.5,30.7,27.1,25.7,25.2,22.3,13.8$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right)$ 2959, 2927, 2852, 1682, 1601, 1448, 1315, 1278, 1259, 1224, 1169, 1129, 1088; MS (70 eV, EI) $m / z(\%) 321\left(\mathrm{M}^{+}+1,44.69\right), 320\left(\mathrm{M}^{+}, 6.73\right), 95$ (100); HRMS (EI) Cacld for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{OI}\left(\mathrm{M}^{+}\right): 320.0637$; Found: 320.0631 .

5. (Z)-4-Iododec-4-en-3-one (Z-3e) wmy-4-156

The reaction of $\mathbf{1 e}(79.2 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ (267.7 mg, 1.05 mmol), and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ with stirring for 60 min afforded $Z-3 \mathrm{e}$ ($61.7 \mathrm{mg}, 73 \%$) (eluent: petroleum ether \sim petroleum ether/ether = 300/1): Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$,
$=\mathrm{CH}), 2.86\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.42\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64-1.44(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.24\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.16\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$) ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.3,151.9,112.0,37.9,31.4,31.1$, 27.3, 22.4, 13.9, 9.0; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2953,2929,2858,1688,1603,1458,1373$, 1166, 1119, 1061; MS (70 eV, EI) $m / z(\%) 281\left(\mathrm{M}^{+}+1,3.34\right), 280\left(\mathrm{M}^{+}, 27.12\right), 57$ (100); HRMS (EI) Cacld for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 280.0324; Found: 280.0325.

6. (Z)-3-Iodo-6-phenylhex-3-en-2-one (Z-3f) wmy-4-159

The reaction of $\mathbf{1 f}(85.2 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}(267.4$ $\mathrm{mg}, 1.05 \mathrm{mmol})$, and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $40{ }^{\circ} \mathrm{C}$ with stirring for 60 \min afforded Z-3f ($61.9 \mathrm{mg}, 68 \%$) (eluent: petroleum ether \sim petroleum ether/ether $=$ $100 / 1 \sim$ petroleum ether/ether $=50 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.28$ (m, 2 H, ArH), 7.27-7.19 (m, 3 H, ArH), $7.03(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.90-2.82(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.80-2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 192.4,152.0,140.1,128.5,128.2,126.4,113.1,39.4,33.5,25.2 ;$ IR (neat) v $\left(\mathrm{cm}^{-1}\right) 3061,3026,2924,2858,1682,1603,1496,1454,1428,1356,1299,1228$, 1168, 1087, 1030; MS (70 eV, EI) $m / z(\%) 301$ (${ }^{+}+1,1.03$), $300\left(\mathrm{M}^{+}, 8.51\right), 91$ (100); HRMS (EI) Cacld for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{OI}\left(\mathrm{M}^{+}\right): 300.0011$; Found: 300.0013.

Preparation of 2-Iodo-2-enals with the Same Substituents at the 3-Position 3h-3k

1. 2-Cyclohexylidene-2-iodoacetaldehyde (3h) ${ }^{32}$

The reaction of $\mathbf{1 h}(69.4 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ ($267.3 \mathrm{mg}, 1.05 \mathrm{mmol}$), and BnSH in $\mathrm{CHCl}_{3}\left(0.6 \mathrm{M}, 0.5 \mathrm{~mL}\right.$) at $-10{ }^{\circ} \mathrm{C}$ with stirring for 30 min afforded $\mathbf{3 h}(49.9 \mathrm{mg}, 67 \%)$ (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=80 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.17(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 2.98\left(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right), 2.74(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $\left.2 \mathrm{H},=\mathrm{CCH}_{2}\right), 1.68-1.59\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.8$, $171.8,105.5,44.5,33.6,28.7,27.8,26.1$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2931,2855,1678,1577$, $1445,1388,1348,1314,1268,1235,1222,1133,1109,1091,1058 ;$ MS (70 eV, EI) $m / z(\%) 250\left(\mathrm{M}^{+}, 100\right)$.

2. 3-Ethyl-2-iodopent-2-enal (3i) wmy-3-186

The reaction of $\mathbf{1 i}(66.6 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}(267.1$ $\mathrm{mg}, 1.05 \mathrm{mmol})$, and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ with stirring for 30 min afforded $3 \mathbf{i}(48.2 \mathrm{mg}, 67 \%)$ (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1$
\sim petroleum ether/ether $=100 / 1):$ Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~s}, 1 \mathrm{H}$, CHO), $2.84\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right), 2.59\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right), 1.21(\mathrm{t}, J$ $\left.=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 184.6, 174.8, 106.4, 37.8, 27.0, 14.6, 11.3; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2972,2932,2872,1684$, $1578,1460,1379,1205,1122,1084,1063$; MS (70 eV, EI) $m / z(\%) 238\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) Cacld for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{OI}\left(\mathrm{M}^{+}\right): 237.9855$; Found: 237.9850 .

3. 3-Butyl-2-iodohept-2-enal (3j) wmy-3-191

The reaction of $\mathbf{1 j}(82.3 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}(267.4$ $\mathrm{mg}, 1.05 \mathrm{mmol})$, and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ with stirring for 45 min afforded $3 \mathbf{j}$ ($66.1 \mathrm{mg}, 75 \%$) (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1$ \sim petroleum ether/ether $=200 / 1):$ Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.05(\mathrm{~s}, 1 \mathrm{H}$, CHO), $2.80\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right), 2.55\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right), 1.62-1.33$ $\left(\mathrm{m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 1.02-0.88\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.6$, $172.9,107.2,44.7,34.1,32.3,29.3,22.9,22.5,13.8,13.7$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2958$, 2930, 2861, 2721, 1683, 1578, 1465, 1381, 1078; MS (70 eV, EI) $m / z(\%) 294\left(\mathrm{M}^{+}\right.$, 45.99), 55 (100); HRMS (EI) Cacld for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 294.0481; Found: 294.0488.

The reaction of $\mathbf{1 k}(93.4 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ ($266.8 \mathrm{mg}, 1.05 \mathrm{mmol}$), and BnSH in $\mathrm{CHCl}_{3}\left(0.6 \mathrm{M}, 0.5 \mathrm{~mL}\right.$) at $-10{ }^{\circ} \mathrm{C}$ with stirring for 60 min afforded $\mathbf{3 h}(47.6 \mathrm{mg}, 63 \%)$ (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=80 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 2.91\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CCH}_{2}\right), 2.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.=\mathrm{CCH}_{2}\right), 1.74-1.55\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.8,171.8$, 105.5, 44.5, 33.6, 28.7, 27.8, 26.1.

Preparation of Z-2-Iodo-2-enals Z-31-Z-3o

1. (Z)-2-Iodo-5-phenylpent-2-enal (Z-3l) wmy-3-173

The reaction of $\mathbf{1 1}(80.9 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}(266.3$ $\mathrm{mg}, 1.05 \mathrm{mmol})$, and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $15{ }^{\circ} \mathrm{C}$ with stirring for 60 min afforded $Z-3 \mathbf{~ (7 8 . 3 ~ m g , ~ 9 1 \%) ~ (e l u e n t : ~ p e t r o l e u m ~ e t h e r ~} \sim$ petroleum ether/ether $=$ $300 / 1 \sim$ petroleum ether/ether $=100 / 1):$ Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{CHO}), 7.38-7.10(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}+=\mathrm{CH}), 2.92-2.76\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 187.5,160.9,139.6,128.4,128.1,126.2,112.2,37.7,33.0$; IR
(neat) $v\left(\mathrm{~cm}^{-1}\right) 3081,3063,3026,2924,2846,2816,2724,1694,1604,1496,1454$, 1188, 1113, 1075; MS (70 eV, EI) m/z (\%) 286 (${ }^{+}$, 2.95), 91 (100); HRMS (EI) Cacld for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 285.9855 ; Found: 285.9852.

A large scale reaction:

A solution of $1 \mathbf{1}(5.3621 \mathrm{~g}, 20 \mathrm{mmol}), \mathrm{CHCl}_{3}(70 \mathrm{~mL})$, and $\mathrm{EtOH}(2 \mathrm{~mL})$ was treated with $\mathrm{I}_{2}(17.7872 \mathrm{~g}, 70 \mathrm{mmol})$ for 5 min at $15^{\circ} \mathrm{C}$. Then a solution of BnSH $(2.35 \mathrm{~mL}, \mathrm{~d}=1.06 \mathrm{~g} / \mathrm{mL}, 2.491 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added within 5 \min. After being stirred for 55 min at $15^{\circ} \mathrm{C}$, the mixture was quenched with 20 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=100 / 1$) afforded Z-31 (4.7854 g, 84\%).

2. (Z)-2-Iodooct-2-enal (Z-3m) wmy-3-172

The reaction of $\mathbf{1 m}(70.6 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ ($267.7 \mathrm{mg}, 1.05 \mathrm{mmol}$), and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $15{ }^{\circ} \mathrm{C}$ with stirring for 30 min afforded $Z-3 \mathrm{~m}(63.4 \mathrm{mg}, 83 \%$) (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=100 / 1)$: Oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.55\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.63-1.50 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.49-1.31 (m, $\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 0.92\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.9,162.7,111.7,36.5,31.3,27.1,22.3,13.8 ; \mathrm{IR}$ (neat) $v\left(\mathrm{~cm}^{-1}\right) 2956,2927,2858,2810,2726,1695,1606,1465,1380,1199,1141$, 1082; MS (70 eV, EI) $m / z(\%) 252\left(\mathrm{M}^{+}, 12.81\right), 41$ (100); HRMS (EI) Cacld for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{OI}\left(\mathrm{M}^{+}\right):$252.0011; Found: 252.0014.

3. (Z)-2-Iododec-2-enal (Z-3n) wmy-3-176

The reaction of $\mathbf{1 n}(78.9 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ ($266.5 \mathrm{mg}, 1.05 \mathrm{mmol}$), and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $15{ }^{\circ} \mathrm{C}$ with stirring for 45 min afforded Z - $3 \mathrm{n}(65.7 \mathrm{mg}, 78 \%$) (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=100 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.55\left(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.65-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.17\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right), 0.89\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 187.9,162.7,111.7,36.5,31.6,29.2,28.9,27.4,22.5$, 14.0; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2926,2856,2806,2726,1698,1605,1465,1379,1185,1140$,

1086; MS (70 eV, EI) m / z (\%) $280\left(\mathrm{M}^{+}, 1.76\right), 55$ (100); HRMS (EI) Cacld for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{OI}\left(\mathrm{M}^{+}\right): 280.0324$; Found: 280.0324

4. (Z)-2-Iodo-4-phenylbut-2-enal (Z-3o) wmy-4-50

The reaction of $\mathbf{1 0}(76.6 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ (267.4 mg, 1.05 mmol), and BnSH in $\mathrm{CHCl}_{3}\left(0.6 \mathrm{M}, 0.5 \mathrm{~mL}\right.$) at $20^{\circ} \mathrm{C}$ with stirring for 30 min afforded $Z-3 \mathbf{3}$ ($30.5 \mathrm{mg}, 37 \%$) (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=80 / 1)$: Oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.42-7.20(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}+=\mathrm{CH}), 3.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 187.9,160.2,136.4,129.0,128.7,127.2,112.1$, 42.7; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3027,2922,2820,1695,1599,1494,1453,1113,1072$; MS (70 eV, EI) $m / z(\%) 272\left(\mathrm{M}^{+}, 33.00\right), 115(100)$; HRMS (EI) Cacld for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 271.9698; Found: 271.9692.

Preparation of E-2-iodo-3-phenyl-2-enals E-3p- E-3q

1. (E)-2-Iodo-3-phenylbut-2-enal (E-3p) wmy-4-68

The reaction of $\mathbf{1 p}(76.7 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ (267.6 mg, 1.05 mmol), and BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ stirred for 60 min afforded the crude product (The E / Z ratio of the product is $96 / 4$ as determined by ${ }^{1} \mathrm{H}$ NMR analysis with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.). Purification (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=100 / 1$) afforded $E-3 \mathbf{p}\left(58.9 \mathrm{mg}, 72 \%, E / Z \geq 98 / 2\right.$, if any): Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.46 (s, $1 \mathrm{H}, \mathrm{CHO}$), 7.48-7.39 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.30-7.21 (m, $2 \mathrm{H}, \mathrm{ArH}$), 2.63 (s, 3 H , CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.9,167.3,139.2,129.3,128.6,128.2,110.3$, 33.6; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3054,3021,2923,2847,2718,1674,1578,1560,1489,1442$, 1375, 1123, 1025; MS (70 eV, EI) $m / z(\%) 272\left(\mathrm{M}^{+}, 50.38\right), 115$ (100); Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{OI}: \mathrm{C}, 44.14, \mathrm{H}, 3.33$; Found: C, 44.17, H, 3.44.

2. (E)-2-Iodo-3-phenylpent-2-enal (E-3q) Wmy-4-113

The reaction of $\mathbf{1 q}(80.7 \mathrm{mg}, 0.3 \mathrm{mmol}), 30 \mu \mathrm{~L}$ of $\mathrm{EtOH}, 1 \mathrm{~mL}$ of $\mathrm{CHCl}_{3}, \mathrm{I}_{2}$ ($267.5 \mathrm{mg}, 1.05 \mathrm{mmol}$), and BnSH in $\mathrm{CHCl}_{3}\left(0.6 \mathrm{M}, 0.5 \mathrm{~mL}\right.$) at $-10^{\circ} \mathrm{C}$ stirred for 45 min afforded the crude product (The E / Z ratio of the product is $96 / 4$ as determined by
${ }^{1} \mathrm{H}$ NMR analysis with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.). Purification (eluent: petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ether $=100 / 1$) afforded only $E-3 q(22.8 \mathrm{mg}, 26 \%)$: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}$, CHO), 7.48-7.33 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.25-7.14 (m, $2 \mathrm{H}, \mathrm{ArH}$), 2.94 (q, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.05\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.3,172.3$, 138.1, 129.2, 128.55, 128.49, 109.4, 39.5, 11.3; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3051,2973,2932$, 2849, 2724, 1679, 1575, 1561, 1442, 1377, 1284, 1128, 1068; MS (70 eV, EI) m/z (\%) $286\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) Cacld for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 285.9855; Found: 285.9856.

The reaction of 3 with 2,4- dinitrophenylhydrazine affording 4

1. (E)-1-(2,4-Dinitrophenyl)-2-((Z)-4-iodonon-3-en-5-ylidene)hydrazine

wmy-4-61

To a solution of 2,4-dinitrophenylhydrazine ($198.4 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{SO}_{4}(1.5$ $\mathrm{mL}, 98 \%)$, EtOH (15 mL), and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$ was added a solution of Z-3a (291.8 mg, $1.1 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ dropwise within 5 min . After being stirred for 5 hours at room temperature, the mixture was extracted with EtOAc ($50 \mathrm{~mL} \times 3$), washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column
chromatography on silica gel (petroleum ether/ethyl acetate $=50 / 1$) afforded $4 \mathbf{a}$ (318.4 mg, 71\%) as solid: mp 113.1-114.0 ${ }^{\circ} \mathrm{C}$ (EtOAc/n-hexane); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.14(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.42-8.34\left(\mathrm{dd}, J_{1}=9.5\right.$ $\left.\mathrm{Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.16(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.37(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 2.72\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57-2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67-1.44(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{2}\right), 1.15\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.1,145.5,145.0,138.5,130.2,129.8,123.3,117.6,106.8,31.7$, 28.0, 27.2, 22.9, 13.7, 12.6; IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 3312,3106,2963,2932,2872,1617$, 1593, 1503, 1422, 1335, 1311, 1257, 1221, 1135, 1110; MS (70 eV, EI) $m / z(\%) 446$ $\left(\mathrm{M}^{+}, 12.42\right), 41$ (100); Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{IN}_{4} \mathrm{O}_{4}: \mathrm{C}, 40.37, \mathrm{H}, 4.29, \mathrm{~N}, 12.56$; Found: C, 40.58, H, 4.29, N, 12.53.

2. (E)-1-(2,4-Dinitrophenyl)-2-((Z)-2-iodo-5-phenylpent-2-enylidene)hydrazine

(4l) wmy-3-195

To a solution of 2,4-dinitrophenylhydrazine ($199.1 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1.5 $\mathrm{mL}, 98 \%)$, $\mathrm{EtOH}(15 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$ was added a solution of $Z-3 \mathbf{~ (~} 314.8 \mathrm{mg}$, $1.1 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ dropwise within 3 min . After being stirred for 3 hours at room temperature, the mixture was extracted with $\operatorname{EtOAc}(50 \mathrm{~mL} \times 3)$, washed with
brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether/ethyl acetate $=5 / 1$) afforded 41 (379.1 $\mathrm{mg}, 81 \%$) as solid: mp $193.9-194.2{ }^{\circ} \mathrm{C}$ (EtOAc/n-hexane); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.13(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.42-8.33\left(\mathrm{dd}, J_{I}=9.0\right.$ $\left.\mathrm{Hz}, J_{2}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 8.06(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH})$, 7.37-7.28 (m, $2 \mathrm{H}, \mathrm{ArH})$, 7.26-7.18 (m, $3 \mathrm{H}, \mathrm{ArH}), 6.52-6.45(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH})$, 2.93-2.75 (m, $\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,147.5,144.9,140.3$, 138.6, 130.2, 129.6, 128.6, 128.4, 126.4, 123.3, 117.4, 101.8, 38.1, 34.0; IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 3414,3303,3090,3022,2930,2858,1616,1585,1515,1504,1421,1332$, 1314, 1139, 1091, 1077; MS (70 eV, EI) $m / z(\%) 466$ (M ${ }^{+}$, 4.17), 91 (100); Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IN}_{4} \mathrm{O}_{4}$: C, 43.79, H, 3.24, N, 12.02; Found: C, 43.90, H, 3.13, N, 11.88.

The Synthetic Application of the Z-3a Affording 5-6

1. (E)-4-Phenylnon-3-en-5-one (5) Wmy-4-30

To a solution of $Z-3 \mathbf{a}(79.9 \mathrm{mg}, 0.3 \mathrm{mmol})$ in 1,2-dimethoxyethane (1.5 mL) were added $\mathrm{Na}_{2} \mathrm{CO}_{3}(95.8 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$, phenyl boronic acid $(40.4 \mathrm{mg}$,
$0.33 \mathrm{mmol})$, and $\mathrm{Pd}(\mathrm{OAc})_{2}(3.5 \mathrm{mg}, 0.016 \mathrm{mmol})$ sequentially. The mixture was stirring at room temperature under nitrogen for 13 h . After the reaction complete, 10 mL of ethyl ether was added. Filtration and evaporation, then column chromatography on silia gel (eluent: petroleum ether/ethyl ether = 100:1) gave 5 ($54.8 \mathrm{mg}, 84 \%$): Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.26(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $6.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.54\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.13-1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.63-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-1.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.01\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87$ $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.3,144.1,142.2,136.3$, $129.5,128.2,127.3,39.2,26.6,22.9,22.3,13.9,13.3$; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3051,3024$, 2960, 2933, 2873, 1690, 1619, 1597, 1494, 1459, 1442, 1378, 1266, 1143, 1072, 1029; MS (70 eV, EI) $m / z(\%) 216$ (M ${ }^{+}$, 6.03), 131 (100); HRMS (EI) Cacld for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}\right): 216.1514$; Found: 216.1518.

2. (E)-4-(Phenylethynyl)non-3-en-5-one (6)

Wmy-4-60

To a solution of $Z-3 \mathbf{a}(80.3 \mathrm{mg}, 0.3 \mathrm{mmol})$ in THF (1 mL) were added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10.6 \mathrm{mg}, 0.015 \mathrm{mmol})$, a solution of phenylacetylene $(46.1 \mathrm{mg}, 0.45$ $\mathrm{mmol})$ in THF (1 mL), CuI ($5.8 \mathrm{mg}, 0.03 \mathrm{mmol})$, and a solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(48.6 \mathrm{mg}$,
$0.48 \mathrm{mmol})$ in THF (1 mL) sequentially. The mixture was stirring at $0{ }^{\circ} \mathrm{C}$ over a period of 2 h under nitrogen. After the reaction complete, 5 mL of ethyl ether was added. Filtration, evaporation and column chromatography on silica gel (eluent: petroleum ether/ethyl ether $=80: 1)$ gave $6(68.4 \mathrm{mg}, 94 \%)$: Oil; ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.57-7.43 (m, $\left.2 \mathrm{H}, \mathrm{ArH}\right), 7.42-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 2.85\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58-2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73-1.60(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.46-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.13\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8,151.9,131.3,128.5,128.3,123.9,122.9$, 97.0, 84.2, 40.0, 26.1, 24.2, 22.3, 13.9, 12.6; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 2960,2933,2873$, 1700, 1601, 1587, 1490, 1459, 1442, 1378, 1254, 1165, 1141, 1099, 1067, 1019; MS (70 eV, EI) $m / z(\%) 240\left(\mathrm{M}^{+}, 31.03\right), 57(100) ;$ HRMS (EI) Cacld for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}\right):$ 240.1514; Found: 240.1512.

Experiments for Mechanistic Study:

1. $\mathrm{CH}_{3}{ }^{18} \mathrm{OH}$ as additive for the reaction wmy-4-119

A solution of 1a $(74.2 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{CHCl}_{3}(1 \mathrm{~mL})$, and $\mathrm{CH}_{3}{ }^{18} \mathrm{OH}(30 \mu \mathrm{~L})$ was treated with $\mathrm{I}_{2}(267.4 \mathrm{mg}, 1.05 \mathrm{mmol})$ for 5 min at $40^{\circ} \mathrm{C}$ followed by the addition of a
solution of BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ with stirring. After being stirred for 20 \min at $40^{\circ} \mathrm{C}$, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{mL} \times 3$), washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether \sim petroleum ether/ether $=300 / 1$) afforded Z-3a (71.6 mg, 90\%): Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.83\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.51-2.36(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.71-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

2. Isotopic distribution experiments

1). Synthesis of Nona-3,4-dien-5-yl phenyl sulfoxide- ${ }^{18} \mathrm{O} 1 \mathrm{a}^{-18} \mathrm{O}$

wmy-5-62, wmy-5-65

$\mathrm{Na}(0.4611 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added to 1.0 mL of ${ }^{18} \mathrm{O}$-labelled water $\left(86 \% \mathrm{H}_{2}{ }^{18} \mathrm{O}\right)$ in a reaction tube. Then 3-bromonon-4-yne ($1.0153 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added into the tube in a glove box. The resulting mixture was refluxed for 19 h with continuous stirring under N_{2} atmosphere. The resulting mixture was allowed to cool down naturally to room temperature followed by quenching with water (5 mL), extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1)$ of the impurity crude product $7-{ }^{18} \mathrm{O}(0.3134 \mathrm{~g})$ as an oil.

To a dried reaction tube were added crude product non-4-yn-3-ol $\left({ }^{18} \mathrm{O}\right) 7-{ }^{18} \mathrm{O}$ $(0.3134 \mathrm{~g})$ prepared above, THF $(10 \mathrm{~mL})$, and triethylamine $(0.4 \mathrm{~mL}, \mathrm{~d}=0.72 \mathrm{~g} / \mathrm{mL}$, $0.288 \mathrm{~g}, 2.85 \mathrm{mmol}$) sequentially under N_{2} atmosphere. After the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, a solution of sulfenyl chloride $(0.3821 \mathrm{~g}, 2.64 \mathrm{mmol})$ was added dropwise within 2 min . After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 60 min , water (5 mL) was added to quench the reaction. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$, washed by brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation and chromatography on silica gel (eluent: petroleum ether / ethyl acetate $=20 / 1$) of the product afforded $\mathbf{1 a}-{ }^{18} \mathrm{O}\left(0.2174 \mathrm{~g}, 17 \%\right.$ in two steps, $\left.64 \%{ }^{18} \mathrm{O}\right)$ as an oil: ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.70-7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.56-7.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 5.83-5.66(\mathrm{~m}$, $1 \mathrm{H},=\mathrm{CH}), 2.29-2.07\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}+\right.$ one proton in $\left.\mathrm{CH}_{2}\right), 1.93-1.70(\mathrm{~m}, 1 \mathrm{H}$, one proton in $\left.\mathrm{CH}_{2}\right), 1.40-1.14\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.14-0.96\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90-0.73(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{3}$); IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3057,2961,2931,2872,1951,1581,1475,1457,1443$, 1378, 1322, 1303, 1083, 1049, 1022; MS (70 eV, EI) $m / z(\%) 250\left(\mathrm{M}\left({ }^{18} \mathrm{O}\right)^{+}, 30.46\right)$,
$248\left(\mathrm{M}\left({ }^{16} \mathrm{O}\right)^{+}, 15.12\right), 221\left(\left(\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right)^{+}, 100\right), 219\left(\left(\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right)^{+}, 46.94\right) ;$ HRMS (EI) Cacld for $\mathrm{C}_{15} \mathrm{H}_{20}{ }^{16} \mathrm{OS}\left(\mathrm{M}^{+}\right)$: 248.1235; Found: 248.1232; HRMS (EI) Cacld for $\mathrm{C}_{15} \mathrm{H}_{20}{ }^{18} \mathrm{OS}\left(\mathrm{M}^{+}\right): 250.1277$; Found: 250.1279.

The ${ }^{18} \mathrm{O} \%$ of $\mathbf{1 a}-{ }^{18} \mathrm{O}$ was detemined by MS spectrum. The natural abundance of the stable isotopes of some common elements has been reported by literatures. The presence and number of sulphur atoms is usually indicated by the contribution of ${ }^{34} \mathrm{~S}$ to the $\mathrm{M}+2$ peak. Various combinations of C, H, O will thus give rise to the intensity of the $\mathrm{M}+2$ peak. According to the theoretical calculations, the ratio $\mathrm{C}_{15} \mathrm{H}_{20}{ }^{16} \mathrm{OS}: \mathrm{C}_{15} \mathrm{H}_{20}{ }^{18} \mathrm{OS}=100: 4.5$. Thus the intensity of $\mathrm{M}+2$ $\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{18} \mathrm{OS}\right)$ peak will be 4.5 percent of the intensity of the molecular peak M $\left(\mathrm{C}_{15} \mathrm{H}_{20}{ }^{16} \mathrm{OS}\right)$. The relative abundances of $221\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}, 219\left[\left(\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right)^{+}\right.$of 1a- ${ }^{18} \mathrm{O}$ are $100,46.94$. (The intensity of $(\mathrm{M}-\mathrm{Et})^{+}$could be calculated due to the contribution from Et to $\mathrm{M}+2$ is extremely small.) The ${ }^{18} \mathrm{O} \%$ of $\mathbf{1 a -}{ }^{18} \mathrm{O}$ can be calculated as follow: $(100-46.94 * 4.5 \%) /(100-46.94 * 4.5 \%+46.94)=67.6 \%$ (See pages 102-104).

In additional, the spurious contributions to the isotope peak intensities from weak background peaks or from impurities in the sample must be considered. The spurious contribution of 1a to $\mathrm{M}+2$: $(3.65-45.44 * 4.5 \%) /(3.65-45.44 * 4.5 \%+45.44)=3.4 \%$ (See pages 106-107).

So the ${ }^{18} \mathrm{O} \%$ of $\mathbf{1 a}-{ }^{18} \mathrm{O}$ is $67 . \%-3.41 \% \approx 64 \%$.

(Z)-4-Iodonon-3-en-5-one- ${ }^{18} \mathrm{O}$ Z-3a- ${ }^{18} \mathrm{O} \quad$ wmy-5-66

A solution of $\mathbf{1 a -}-{ }^{18} \mathrm{O}\left(89.4 \mathrm{mg}, 0.36 \mathrm{mmol}, 64 \%{ }^{18} \mathrm{O}\right), \mathrm{CHCl}_{3}(1.2 \mathrm{~mL})$, and EtOH $(36 \mu \mathrm{~L})$ was treated with $\mathrm{I}_{2}(320.7 \mathrm{mg}, 1.26 \mathrm{mmol})$ for 5 min at $40^{\circ} \mathrm{C}$ followed by the addition of a solution of BnSH in $\mathrm{CHCl}_{3}(44.7 \mathrm{mg}, 0.36 \mathrm{mmol}, 0.5 \mathrm{~mL})$ with stirring. After being stirred for 60 min at $40^{\circ} \mathrm{C}$, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether \sim petroleum ether/ether $=300 / 1)$ afforded $Z-3 \mathbf{a}^{-18} \mathrm{O}\left(77.4 \mathrm{mg}, 81 \%, 41 \%{ }^{18} \mathrm{O}\right)$: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.49-2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.70-1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.28(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.14\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.0,152.9,111.9,37.5,31.5,27.1,22.3,13.8,12.0$; IR (neat) v $\left(\mathrm{cm}^{-1}\right) 2959,2932,2872,1682,1605,1457,1413,1378,1323,1280,1171,1121$, 1085, 1019; MS (70 eV, EI) $m / z(\%) 268\left(\mathrm{M}\left({ }^{18} \mathrm{O}\right)^{+}, 0.91\right), 266\left(\mathrm{M}\left({ }^{16} \mathrm{O}\right)^{+}, 1.36\right), 239$ $\left(\left(\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right)^{+}, 65.81\right), 237\left(\left(\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right)^{+}, 91.50\right), 53$ (100); HRMS (EI) Cacld for $\mathrm{C}_{9} \mathrm{H}_{15}{ }^{16} \mathrm{OI}\left(\mathrm{M}^{+}\right)$: 266.0168; Found: 266.0171; HRMS (EI) Cacld for $\mathrm{C}_{9} \mathrm{H}_{15}{ }^{18} \mathrm{OI}\left(\mathrm{M}^{+}\right)$:
268.0210; Found: 268.0204. The ${ }^{18} \mathrm{O} \%$ of $Z-3 \mathrm{a}-{ }^{18} \mathrm{O}$ was detemined by MS spectrum: $41.8 \%-0.6 \% \approx 41 \%$ (see pages $110-114$).

E-4-Iodo-5-phenylthio-4-nonen-3-ol- ${ }^{18} \mathrm{O}\left(E-2 \mathrm{a}^{-18} \mathrm{O}\right) \quad$ wmy-6-44

A solution of $\mathbf{1 a}-{ }^{18} \mathrm{O}\left(163.2 \mathrm{mg}, 0.65 \mathrm{mmol}, 69 \%{ }^{18} \mathrm{O}\right)$ in $\mathrm{MeOH}(8 \mathrm{~mL})$ was treated with $\mathrm{I}_{2}(248.3 \mathrm{mg}, 0.98 \mathrm{mmol})$ for 5 min at $40^{\circ} \mathrm{C}$ followed by the addition of a solution of $\mathrm{BnSH}(121.0 \mathrm{mg}, 0.98 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ with stirring. After being stirred at for 60 min , the mixture was quenched with 5 mL of water at $40^{\circ} \mathrm{C}$ followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with ether $(10 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1$) afforded $E-2 \mathbf{a}-{ }^{18} \mathrm{O}\left(208.0 \mathrm{mg}, 84 \%, 69 \%{ }^{18} \mathrm{O}\right):$ Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.16(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.56(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 2.58-2.44 ($\mathrm{m}, 1 \mathrm{H}$, one protone in CH_{2}), 2.36-2.22 $\left(\mathrm{m}, 1 \mathrm{H}\right.$, one protone in $\left.\mathrm{CH}_{2}\right), 2.01$ (bs, $1 \mathrm{H}, \mathrm{OH}$), 1.74-1.40 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.34-1.16 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 0.94-0.77 (m, 6 $\left.\mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.6,134.3,130.3,129.0,127.0,120.1$, 74.2, 41.3, 30.9, 29.9, 22.2, 13.8, 9.5; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3386,3058,2959,2929,2872$, 1582, 1476, 1461, 1439, 1379, 1327, 1237, 1098, 1055, 1024, 1002; MS (70 eV, EI)
$m / z(\%) 378\left(\mathrm{M}\left({ }^{18} \mathrm{O}\right)^{+}, 3.07\right), 376\left(\mathrm{M}\left({ }^{16} \mathrm{O}\right)^{+}, 1.20\right), 141(100)$; HRMS (EI) Cacld for $\mathrm{C}_{15} \mathrm{H}_{21}{ }^{18}$ OSI $\left(\mathrm{M}^{+}\right)$: 378.0400; Found: 378.408; HRMS (EI) Cacld for $\mathrm{C}_{15} \mathrm{H}_{21}{ }^{16} \mathrm{OSI}$ $\left(\mathrm{M}^{+}\right): 376.0358$; Found: 376.0352 . The ${ }^{18} \mathrm{O} \%$ of $E-2 \mathbf{a}^{-18} \mathrm{O}$ was detemined by MS spectrum: $71.5 \%-1.7 \% \approx 69 \%$ (see pages $117-121$).

$E-2 a^{-18}{ }^{18}$ reacted with $45 \% \mathrm{HI}$ aqueous affording Z-3a: wmy-6-45:

A solution of $E-2 \mathbf{a d}^{18} \mathrm{O}\left(123.8 \mathrm{mg}, 0.33 \mathrm{mmol}, 69 \%{ }^{18} \mathrm{O}\right), \mathrm{CHCl}_{3}(6 \mathrm{~mL})$, and EtOH (0.12 mL) was treated with $45 \mathrm{wt} . \% \mathrm{HI}$ in $\mathrm{H}_{2} \mathrm{O}(0.66 \mathrm{mmol}, 188 \mu \mathrm{~L})$ for 12 hours at $40^{\circ} \mathrm{C}$. The reaction was quenched with 5 mL of water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel $($ petroleum ether/ether $=300 / 1)$ afforded $Z-3 a-{ }^{18} \mathrm{O}\left(30.5 \mathrm{mg}, 35 \%, 1 \%{ }^{18} \mathrm{O}\right)$: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.83\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.52-2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.74-1.56 (m, 2 H, CH $)_{2}$), 1.46-1.28 (m, 2 H, CH $)_{2}$), $1.15\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92$ $\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.0,153.0,111.9,37.5$, 31.5, 27.1, 22.3, 13.8, 12.0; MS (70 eV, EI) $m / z(\%) 268\left(\mathrm{M}\left({ }^{18} \mathrm{O}\right)^{+}, 0.04\right), 266(\mathrm{M}$ $\left({ }^{16} \mathrm{O}\right)^{+}$, 1.16), $239\left(\left(\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right)^{+}, 1.84\right), 237\left(\left(\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right)^{+}, 100\right)$. The ${ }^{18} \mathrm{O} \%$ of $Z-3 a-{ }^{18} \mathrm{O}$ was detemined by MS spectrum: $1.8 \%-0.6 \% \approx 1 \%$ (See pages 122 and 123).

3. 4-Bromophenthyl alcohol as additive for the reaction wmy-4-109

A solution of 1a $(75.1 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{CHCl}_{3}(1 \mathrm{~mL})$, and 4-bromophenthyl alcohol ($101.9 \mathrm{mg}, 0.51 \mathrm{mmol}$) was treated with $\mathrm{I}_{2}(266.8 \mathrm{mg}, 1.05 \mathrm{mmol})$ for 5 min at $40^{\circ} \mathrm{C}$ followed by the addition of a solution of BnSH in $\mathrm{CHCl}_{3}(0.6 \mathrm{M}, 0.5 \mathrm{~mL})$ with stirring. After being stirred for 60 min at $40^{\circ} \mathrm{C}$, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether \sim petroleum ether/ether $=300 / 1 \sim$ petroleum ether/ethyl acetate $=$ $10 / 1)$ afforded $Z-3 \mathbf{a}(31.3 \mathrm{mg}, 39 \%), \boldsymbol{8}^{33}(21.9 \mathrm{mg}, 31 \%), \mathbf{9}(10.5 \mathrm{mg}, 32 \%), 10(9.6$ $\mathrm{mg}, 26 \%$), and 4-bromophenthyl alcohol ($96.8 \mathrm{mg}, 95 \%$).

Z-3a: Oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.83(\mathrm{t}, J$ $\left.=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.50-2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.72-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45-1.24$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.15\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

8 33 : Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.50-7.39 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.34-7.12 (m, 8 $\mathrm{H}, \mathrm{ArH}), 3.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.0,136.6,129.4,128.9$, 128.5, 127.7, 127.5, 126.8, 43.4; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3060,3028,2925,2852,1945$, 1876, 1578, 1494, 1476, 1453, 1438, 1299, 1230, 1199, 1068, 1024; MS (70 eV, EI) $m / z(\%) 233\left(\mathrm{M}^{+}+1,2.82\right), 232\left(\mathrm{M}^{+}, 17.13\right), 91(100)$.

9: Oil; CAS: 882-33-7. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, 7.36-7.14 (m, $6 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.0, 129.0, 127.5, 127.1; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3072,3058,2926,2852,1578,1476,1438,1296,1068,1023 ;$ MS $(70$ eV , EI) $m / z(\%) 219\left(\mathrm{M}^{+}+1,6.45\right), 218\left(\mathrm{M}^{+}, 50.76\right), 109(100)$.

10: Oil; CAS: 3076-69-5. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.17(\mathrm{~m}, 10 \mathrm{H}$, ArH), $3.59\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,129.4,128.4$, 127.4, 43.3; IR (neat) $v\left(\mathrm{~cm}^{-1}\right) 3084,3061,3028,2956,2923,2849,1601,1494,1453$, 1414, 1229, 1198, 1070, 1028; MS (70 eV, EI) $m / z(\%) 247\left(\mathrm{M}^{+}+1,2.67\right), 246\left(\mathrm{M}^{+}\right.$, 14.02), 91 (100).

4-Bromophenthyl alcohol: Oil; CAS: 4654-39-1. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.77(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.76\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,131.4,130.6,120.1,63.0,38.4$.

A solution of $\mathbf{8}(232.6 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{CHCl}_{3}(10 \mathrm{~mL})$, and $\mathrm{EtOH}(0.2 \mathrm{~mL})$ was treated with $\mathrm{I}_{2}(255.1 \mathrm{mg}, 1.0 \mathrm{mmol})$ at $40{ }^{\circ} \mathrm{C}$ with stirring. After being stirred for 17 h at $40^{\circ} \mathrm{C}$, the mixture was quenched with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, evaporation, and column chromatography on silica gel (petroleum ether) afforded, $\mathbf{8}$ ($107.8 \mathrm{mg}, 46 \%$), $\mathbf{9}$ ($57.1 \mathrm{mg}, 52 \%$), $\mathbf{1 0}$ ($64.9 \mathrm{mg}, 54 \%$).

8: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.36$ (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.32-7.10 (m, 8 H , ArH), $3.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.0,136.5,129.3,128.8$, 128.5, 127.6, 127.5, 126.7, 43.3.

9: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.38$ (m, $4 \mathrm{H}, \mathrm{ArH}$), 7.30-7.08 (m, 6 H , $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,129.0,127.4,127.0$.

10: Oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.15$ ($\mathrm{m}, 10 \mathrm{H}, \mathrm{ArH}$), $3.59(\mathrm{~s}, 4 \mathrm{H}, 2$ $\left.\times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 137.3, 129.4, 128.4, 127.4, 43.2.

References:

1. T. Tsuda, T. Kiyoi, T. Saegusa J. Org. Chem. 1990, 55, 2554.
2. a) K. Kokubo, K. Matsumasa, M. Miura, M. Nomura J. Org. Chem. 1997, 62, 4564.
b) C.-H. Jun, H. Lee, J.-B. Hong, B.-I. Kwon Angew. Chem., Int. Ed. 2002, 41, 2146.
3. V. M. Williams, J. C. Leung, R. L. Patman, M. J. Krische Tetrahedron 2009, 65, 5024.
4. S. Hatanaka, Y. Obora, Y. Ishii Chem. Eur. J. 2010, 16, 1883.
5. a) G. S. Viswanathan, C.-J. Li Tetrahedron Lett. 2002, 43, 1613. b) A. Hayashi, M. Yamaguchi, M. Hirama Synlett 1995, 195. c) M. Curini, F. Epifano, F. Maltese; O. Rosati Synlett 2003, 552. d) M. F. A. Adamo, G. Bellini, S. Suresh Tetrahedron 2011, 67, 5784.
6. A. El-Batta, C. Jiang, W. Zhao, R. Anness, A. L. Cooksy, M. Bergdahl J. Org. Chem. 2007, 72, 5244.
7. a) B. E. Maryanoff, A. B. Reitz Chem. Rev. 1989, 89, 863. b) G. Sabitha, P. Gopal, J. S. Yadav Tetrahedron: Asymmetry 2009, 20, 2205.
8. Y. Sugawara, W. Yamada, S. Yoshida, T. Ikeno, T. Yamada J. Am. Chem. Soc. 2007, 129, 12902.
9. a) M. Egi, Y. Yamaguchi, N. Fujiwara, S. Akai Org. Lett. 2008, 10, 1867. b) M. N. Pennell, M. G. Unthank, P. Turner, T. D. Sheppard J. Org. Chem. 2011, 76, 1479.
10. a) M. Picquet, C. Bruneau, P. H. Dixneuf Chem. Commun. 1997, 1201. b) V. Cadierno, S. E. García-Garrido, J. Gimeno Adv. Synth. Catal. 2006, 348, 101.
11. a) C. P. Mehnert, N. C. Dispenziere, R. A. Cook Chem. Commun. 2002, 1610. b) J. Hamaya, T. Suzuki, T. Hoshi, K. Shimizu, Y. Kitayama, H. Hagiwara Synlett 2003, 873. c) F. Niu, L. Zhang, S.-Z. Luo, W.-G. Song Chem. Commun. 2010, 46, 1109. d) S. Abelló, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, D. Tichit, B. Coq Chem. Commun. 2004, 1096. e) A. Arnold, M. Markert, R. Mahrwald Synthesis 2006, 7, 1099.
12. E. J. Corey, H. A. Kirst, John A. Katzenellenbogen J. Am. Chem. Soc.1970, 92, 6314.
13. a) J.-S. Zheng, H.-N. Chang, F.-L. Wang, L. Liu J. Am. Chem. Soc. 2011, 133, 11080. b) K. Ohmori, T. Suzuki, K. Taya, D. Tanabe, T. Ohta, K. Suzuki Org. Lett. 2001, 3, 1057. c) B. D. Jones, J. J. La Clair, C. E. Moore, A. L. Rheingold, M. D. Burkart Org. Lett. 2010, 12, 4516. d) S. Tamura, S. Doke, N. Murakami Tetrahedron 2010, 66, 8476.
14. H. Li, C. Morin Tetrahedron Lett. 2004, 45, 5673.
15. a) P. Gamez, C. Ariente, J. Goré, B. Cazes Tetrahedron 1998, 54, 14825. b) H. E. Ensley, R. R. Buescher, K. Lee J. Org. Chem. 1982, 47, 404. c) G. A. Tolstikov, M. S. Miftakhov, N. A. Danilova, Y. L. Velder Synthesis 1986, 496. d) W. Adam, P. Klug Synthesis 1994, 567. e)E.Piers, P.D. Coish Synthesis 1995, 47.
16. a) G. Pattenden, G. Rescourio Org. Biomol. Chem., 2008, 6, 3428. b) R. S.

Coleman, M. C. Walczak, E. L. Campbell J. Am. Chem. Soc. 2005, 127, 16038. c)
A. Pollex, M. Hiersemann Org. Lett. 2005, 7, 5705. d) N. A. Morra, B. L.

Pagenkopf Org. Lett. 2011, 13, 572. e) D. Oehlrich, S. M. E. Vidot, M. Davies, G. J.

Clarkson, M. Shipman Tetrahedron 2007, 63, 4703.
17. a) L. Commeiras, M. Santelli, J.-L. Parrain Tetrahedron Lett. 2003, 44, 2311. b) S. Tamura, M. Tonokawa, N. Murakami Tetrahedron Lett. 2010, 51, 3134.
18. D. Zhang, J. M. Ready J. Am. Chem. Soc. 2007, 129, 12088.
19. a) F.-L. Qing, W.-Z. Gao, J. Ying J. Org. Chem. 2000, 65, 2003. b) T. Yamazaki, T. Yamamoto, R. Ichihara J. Org. Chem. 2006, 71, 6251.
20. R. Jiméneza, L. A. Maldonado, H. Salgado-Zamora Nat. Prod. Res. 2010, 24, 1274.
21. a) M. Slodowicz, S. Barata-Vallejo, A. Vázquez, N. S. Nudelman, A. Postigo J. Fluorine Chem. 2012, 135, 137. b) J. F. Chesa, D. Velasco, F. López-Calahorra Synth. Commun. 2010, 40, 1822. c) X.-Q. Tang. C.-M. Hu J. Chem. Soc., Chem. Commun. 1994, 631. d) H.-P. Guan, X.-Q. Tang, B.-H. Luo, C.-M. Hu Synthesis 1997, 1489.
22. a) X. Fang, X. Yang, X. Yang, S Mao, Z. Wang, G. Chen, F. Wu Tetrahedron 2007, 63, 10684. b) Z.-Y. Long, Q.-Y. Chen Tetrahedron Lett. 1998, 39, 8487. c) A.-R. Li, Q.-Y. Chen Synthesis 1997, 333.
23. Y. Li, H. Li, J. Hu Tetrahedron 2009, 65, 478.
24. a) S. Ma, Z. Lu Adv. Synth. Catal. 2006, 348, 1894. b) Z. Lu, S. Ma J. Org. Chem. 2006, 71, 2655.
25. a) S. Ma, Acc. Chem. Res. 2009, 42, 1679. b) J. Luis G. Ruano, V. Marcos, J. Alemén Angew. Chem. Int. Ed. 2009, 48, 3155. c) R. W. Friesen, C. Vanderwal J. Org. Chem. 1996, 61, 9103.
26. a) J. Yang, S. K. Rallapalli, J. M. Cook Tetrahedron Lett. 2010, 51, 815. b) W. R. Bowman, C. F. Bridge, P. Brookes, M. O. Cloonan, D. C. Leach J. Chem. Soc., Perkin Trans. 1, 2002, 58. c) W. Yin, M. S. Kabir, Z. Wang, S. K. Rallapalli, J. Ma, J. M. Cook J. Org. Chem. 2010, 75, 3339.
27. D. Zhang, C. Yuan Eur. J. Org. Chem. 2007, 3916.
28. Ma, S.; Ren, H.; Wei, Q. J. Am. Chem. Soc. 2003, 125, 4817.
29. Zhou, C.; Fang, Z.; Fu, C.; Ma. S. J. Org. Chem. 2009, 74, 2887.
30. Wang, M.; Fu, C.; Ma, S. Adv. Synth. Catal. 2011, 353, 1775.
31. Mukai, C.; Kobayashi, M.; Kubota, S.; Takahashi, Y.; Kitagaki, S. J. Org. Chem. 2004, 69, 2128.
32. Antonioletti, R.; D’Auria, M.; Piancatelli, G.; Scettri, A. Tetrahedron Lett. 1981, 22, 1041.
33. Prabhu, R. K.; Sivanand, S.; Chandrasekaran, S. Angew. Chem. Int. Ed. 2000, 39, 4316.

${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR Spectra of These Compounds

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science

\qquad
9.375

Wddo , OS

 37.409
\qquad

-22.227
\qquad -11.932

$0 \angle L-\varepsilon$-кum

$981-\varepsilon$-Кшм
106.393

77.424
76.000
7676
-37.787
-27.015
14.644
11.334
11.334

-31.325

Spectrum
Line: 1 R Time. 6.0 (Scant:1187)
Linet: 1 RTime.
Maspeaks: 168
RawModeSingle 60 (1187) BasePenk
BG Mode. 66 (1367) Group 1-Event 1

Mass Table
Line\#:1 R.Time:6.0(Scan\#:1187)
MassPeaks:168
RawMode:Single 6.0(1187) BasePeak:221(230655)
BG Mode:6.6(1367) Group 1 - Event 1

$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.	$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.
1	38.10	2151	0.93	25	66.05	2385	1.03
2	39.05	19938	8.64	26	67.00	5548	2.41
3	40.10	1678	0.73	27	69.00	11315	4.91
4	41.10	72418	31.40	28	70.10	1289	0.56
5	42.05	5125	2.22	29	71.05	8006	3.47
6	43.05	25913	11.23	30	72.10	1135	0.49
7	44.00	458	0.20	31	73.10	11880	5.15
8	45.00	30271	13.12	32	73.85	3791	1.64
9	46.05	1053	0.46	33	75.00	3711	1.61
10	47.10	2791	1.21	34	76.05	5822	2.52
11	50.00	2929	1.27	35	77.05	21291	9.23
12	51.05	9501	4.12	36	78.05	6472	2.81
13	52.05	2962	1.28	37	79.10	5572	2.42
14	53.15	6353	2.75	38	81.00	2218	0.96
15	55.00	11717	5.08	39	82.05	2959	1.28
16	56.15	3842	1.67	40	82.90	1622	0.70
17	57.10	204816	88.80	41	84.10	1849	0.80
18	58.10	12657	5.49	42	85.10	51466	22.31
19	59.00	7102	3.08	43	86.05	6090	2.64
20	61.05	1047	0.45	44	87.10	106495	46.17
21	62.05	2089	0.91	45	88.05	7830	3.39
22	63.05	10591	4.59	46	89.00	20140	8.73
23	64.00	2748	1.19	47	90.05	10535	4.57
24	65.05	6274	2.72	48	91.05	65254	28.29

\#	m/z	Abs. Int.	Rel. Int.	\#	m / z	Abs. Int.	Rel. Int.
49	92.05	7037	3.05	106	155.20	1682	0.73
50	92.80	3062	1.33	107	156.10	1460	0.63
51	93.85	1158	0.50	108	158.05	3426	1.49
52	94.90	2663	1.15	109	159.00	7126	3.09
53	96.05	1743	0.76	110	160.10	5026	2.18
54	97.05	2673	1.16	111	161.05	21761	9.43
55	99.15	438	0.19	112	162.10	16521	7.16
56	100.10	1135	0.49	113	163.05	166187	72.05
57	101.05	3509	1.52	114	164.10	21974	9.53
58	102.05	11092	4.81	115	165.05	18209	7.89
59	103.10	12632	5.48	116	165.95	2428	1.05
60	104.15	1368	0.59	117	167.10	2098	0.91
61	105.10	1740	0.75	118	168.00	2297	1.00
62	107.05	1043	0.45	119	169.00	1162	0.50
63	108.00	5351	2.32	120	171.05	12255	5.31
64	109.05	5416	2.35	121	172.05	10970	4.76
65	110.05	1351	0.59	122	173.10	7151	3.10
66	110.95	1202	0.52	123	174.05	2384	1.03
67	113.15	3486	1.51	124	175.10	4140	1.79
68	114.10	3663	1.59	125	175.90	2390	1.04
69	115.05	54617	23.68	126	176.95	3146	1.36
70	116.10	11231	4.87	127	178.05	3260	1.41
71	117.05	6151	2.67	128	179.10	1817	0.79
72	119.10	1254	0.54	129	180.00	1078	0.47
73	121.00	12289	5.33	130	183.10	1188	0.52
74	122.00	2799	1.21	131	184.10	5097	2.21
75	123.00	5359	2.32	132	184.95	4875	2.11
76	124.20	1153	0.50	133	186.05	2616	1.13
77	126.15	2894	1.25	134	187.05	15263	6.62
78	127.10	13484	5.85	135	188.05	3022	1.31
79	128.10	40850	17.71	136	189.00	11999	5.20
80	129.10	35886	15.56	137	190.05	2718	1.18
81	130.10	32222	13.97	138	191.00	23254	10.08
82	131.10	8414	3.65	139	192.00	3372	1.46
83	132.05	1809	0.78	140	193.05	11455	4.97
84	133.05	12614	5.47	141	194.05	2080	0.90
85	134.05	63581	27.57	142	199.00	2108	0.91
86	135.10	189876	82.32	143	201.05	10621	4.60
87	136.05	20092	8.71	144	201.90	1596	0.69
88	137.00	9234	4.00	145	203.00	1423	0.62
89	138.10	1263	0.55	146	204.00	1470	0.64
90	139.10	5103	2.21	147	205.00	1546	0.67
91	140.05	1323	0.57	148	205.95	2640	1.14
92	141.00	4599	1.99	149	207.05	238	0.10
93	142.10	3185	1.38	150	208.00	80	0.03
94	143.10	3226	1.40	151	215.00	1102	0.48
95	144.05	1543	0.67	152	217.15	1953	0.85
96	145.00	4942	2.14	153	218.05	1358	0.59
97	146.15	3274	1.42	154	219.05	108261	46.94
98	147.05	53878	23.36	155	220.05	20638	8.95
99	148.00	15172	6.58	156	221.05	230655	100.00
100	149.05	9950	4.31	157	222.00	38194	16.56
101	150.15	2605	1.13	158	223.00	14209	6.16
102	151.05	5952	2.58	159	224.00	1844	0.80
103	152.05	6198	2.69	160	230.10	11598	5.03
104	153.20	4924	2.13	161	231.10	3252	1.41
105	154.00	2022	0.88	162	232.20	2740	1.19

$\#$	m / z	Abs. Int.	Rel. Int.	$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.
163	246.10	2492	1.08	166	250.10	70249	30.46
164	248.10	34866	15.12	167	251.10	13151	5.70
165	249.10	7194	3.12	168	252.05	3286	1.42

The relative abundances of $221\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}, 219\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right]^{+}$are $100,46.94$.
$(100-46.94 * 4.5 \%) /(100-46.94 * 4.5 \%+46.94)=67.59 \%$

$$
\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~S}^{16} \mathrm{O}
$$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15}{ }^{16} \mathrm{OS}$
Exact Mass: 219.0844
Molecular Weight: 219.3181
$\mathrm{m} / \mathrm{z}: 219.0844(100.0 \%), 220.0877$ (14.1\%), 221.0802 (4.5\%)

Elemental Analysis: C, 71.19; H, 6.89; O, 7.29; S, 14.62

$$
\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~S}^{18} \mathrm{O}
$$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15}{ }^{18} \mathrm{OS}$
Exact Mass: 221.0886
Molecular Weight: 221.3224
$\mathrm{m} / \mathrm{z}: 221.0886(100.0 \%), 222.0920(14.1 \%), 223.0844$ (4.5\%)

Elemental Analysis: C, 70.55; H, 6.83; O, 8.13; S, 14.49

Mass Table
Line\#:1 R.Time:7.5(Scan\#:1665)
MassPeaks:111
RawMode:Single 7.5(1665) BasePeak:135(78737)
BG Mode:7.6(1693) Group 1 - Event 1

$\#$	m / z	Abs. Int.	Rel. Int.	$\#$	m / z	Abs. Int.	Rel. Int.
1	39.15	3647	4.63	25	77.05	5758	7.31
2	40.10	307	0.39	26	78.00	1506	1.91
3	41.15	20983	26.65	27	79.00	1430	1.82
4	42.15	1255	1.59	28	81.05	1090	1.38
5	43.15	6618	8.41	29	82.10	1046	1.33
6	44.10	205	0.26	30	83.05	1252	1.59
7	45.15	8994	11.42	31	85.10	30605	38.87
8	50.10	1212	1.54	32	86.10	1839	2.34
9	51.10	3222	4.09	33	87.05	1155	1.47
10	52.05	1299	1.65	34	89.05	9720	12.34
11	53.15	2007	2.55	35	90.10	3631	4.61
12	55.10	4736	6.01	36	91.10	23181	29.44
13	57.15	43742	55.55	37	92.05	2618	3.32
14	58.10	3401	4.32	38	93.00	1302	1.65
15	59.20	2735	3.47	39	96.20	384	0.49
16	63.05	4524	5.75	40	97.05	1505	1.91
17	65.15	2524	3.21	41	101.15	1150	1.46
18	66.20	1046	1.33	42	102.10	4847	6.16
19	67.15	2101	2.67	43	103.05	4494	5.71
20	69.05	3313	4.21	44	108.00	2185	2.78
21	71.10	3657	4.64	45	109.10	1340	1.70
22	73.10	8638	10.97	46	114.05	1040	1.32
23	74.10	1993	2.53	47	115.10	13989	17.77
24	75.05	2671	3.39	48	116.15	3585	4.55

$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.	$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.
49	117.00	2646	3.36	81	173.00	2876	3.65
50	121.10	$\mathbf{2 5 3 5}$	3.25	82	174.95	3229	4.10
51	127.10	3913	4.97	83	176.05	3123	3.97
52	128.10	13116	16.66	84	184.05	2013	2.56
53	129.10	7420	9.42	85	185.00	2326	2.95
54	130.10	7855	9.98	86	186.00	1046	1.33
55	131.10	1459	1.85	87	187.05	7674	9.75
56	133.05	3721	4.73	88	188.05	2192	2.78
57	134.05	19661	24.97	89	189.00	13414	17.04
58	135.05	78737	109.00	90	190.10	2505	3.18
59	136.10	9250	11.75	91	191.05	1856	2.36
60	137.05	3883	4.93	92	192.00	1046	1.33
61	139.05	1361	1.73	93	201.00	5142	6.53
62	141.15	1658	2.11	94	202.00	1442	1.83
63	143.30	1596	2.03	95	203.05	1343	1.71
64	145.00	1660	2.11	96	204.05	2627	3.34
65	146.05	2009	2.55	97	206.95	2075	2.64
66	147.10	15542	19.74	98	208.05	1334	1.69
67	148.15	3293	4.18	99	209.00	1340	1.70
68	149.05	3191	4.05	100	216.95	1882	2.39
69	152.15	2160	2.74	101	218.05	1752	2.23
70	153.15	1847	2.35	102	219.00	35776	45.44
71	153.90	1916	2.43	103	220.05	5428	6.89
72	159.10	1596	2.03	104	221.05	2876	3.65
73	159.90	1506	1.91	105	230.10	5999	7.62
74	161.05	14187	18.02	106	231.10	1801	2.29
75	162.15	7965	10.12	107	232.15	1869	2.37
76	163.05	77181	98.02	108	246.00	2633	3.34
77	164.10	9929	12.61	109	248.10	17280	21.95
78	165.10	4796	6.09	110	249.10	3490	4.43
79	170.95	4774	6.06	111	250.25	1379	1.75
80	172.05	6300	8.00				

The relative abundances of $221\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}, 219\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right]^{+}$are 3.65, 45.44.
$(3.65-45.44 * 4.5 \%) /(3.65-45.44 * 4.5 \%+45.44)=3.41 \%$

- S108 -

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

Sample Information
E:\msmlwmy-5-66_2012-4-6_3.qgd

Linet: 1 R Time:4.S(Scant 757) MassPeaks: 156
RawMode Single 4. 5(757) BasePeak $53(2678104)$ BG Mode $4.9(879)$ Group 1-Event 1

Mass Table
Line\#:1 R.Time:4.5(Scan\#:757)
MassPeaks:156
RawMode:Single 4.5(757) BasePeak:53(2678104)
BG Mode:4.9(879) Group 1 - Event 1

$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.	$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.
1	36.15	1674	0.06	25	60.05	6521	0.24
2	37.05	32984	1.23	26	61.05	11907	0.44
3	38.10	158063	5.90	27	62.00	21198	0.79
4	39.05	1813495	67.72	28	63.05	44368	1.66
5	40.10	195874	7.31	29	64.05	11770	0.44
6	41.05	2364334	88.28	30	65.05	94443	3.53
7	42.05	230797	8.62	31	66.05	71268	2.66
8	43.05	590276	22.04	32	67.05	288166	10.76
9	44.05	73685	2.75	33	68.05	94629	3.53
10	45.05	316291	11.81	34	69.05	419786	15.67
11	46.00	7903	0.30	35	70.05	45490	1.70
12	47.05	9311	0.35	36	71.05	44774	1.67
13	48.05	1585	0.06	37	72.10	5300	0.20
14	49.00	17118	0.64	38	73.05	7728	0.29
15	50.00	195218	7.29	39	74.05	9095	0.34
16	51.05	363604	13.58	40	75.05	8266	0.31
17	52.10	279255	10.43	41	76.15	6486	0.24
18	53.05	2678104	100.00	42	77.05	269995	10.08
19	54.05	2400709	89.64	43	78.05	58299	2.18
20	55.05	1236411	46.17	44	79.05	497902	18.59
21	56.10	172525	6.44	45	80.10	62796	2.34
22	57.10	2529065	94.43	46	81.05	398603	14.88
23	58.10	148753	5.55	47	82.05	185392	6.92
24	59.05	53670	2.00	48	83.05	344311	12.86

\#	m/z	Abs. Int.	Rel. Int.	\#	m / z	Abs. Int.	Rel. Int.
49	84.05	141353	5.28	103	140.15	16981	0.63
50	85.05	585462	21.86	104	141.10	74871	2.80
51	86.10	57079	2.13	105	142.10	6230	0.23
52	87.10	320129	11.95	106	151.95	17304	0.65
53	88.05	18527	0.69	107	152.95	56198	2.10
54	89.05	5070	0.19	108	153.95	2668	0.10
55	90.15	3296	0.12	109	154.90	24849	0.93
56	91.05	88501	3.30	110	156.90	3012	0.11
57	92.10	26103	0.97	111	163.95	3314	0.12
58	93.10	101887	3.80	112	164.95	14662	0.55
59	94.15	19063	0.71	113	165.90	13516	0.50
60	95.10	187274	6.99	114	166.90	14455	0.54
61	96.10	84214	3.14	115	167.90	1527	0.06
62	97.10	1153552	43.07	116	168.95	11919	0.45
63	98.10	141585	5.29	117	169.90	1129	0.04
64	99.10	708745	26.46	118	170.85	5502	0.21
65	100.10	54879	2.05	119	178.95	12514	0.47
66	101.10	3617	0.14	120	179.95	14467	0.54
67	102.10	2049	0.08	121	180.95	661573	24.70
68	103.10	7673	0.29	122	181.90	38188	1.43
69	104.10	3097	0.12	123	182.90	24039	0.90
70	105.10	28997	1.08	124	183.90	1188	0.04
71	106.05	7262	0.27	125	184.90	1162	0.04
72	107.05	23044	0.86	126	192.85	1336	0.05
73	108.05	7277	0.27	127	193.80	3415	0.13
74	109.10	83071	3.10	128	194.95	3093	0.12
75	110.10	140406	5.24	129	195.90	3302	0.12
76	111.05	68747	2.57	130	196.90	1871	0.07
77	112.10	91570	3.42	131	205.95	2086	0.08
78	113.10	17340	0.65	132	206.95	2759	0.10
79	114.15	1850	0.07	133	207.95	29674	1.11
80	115.00	3558	0.13	134	208.90	2038230	76.11
81	116.10	1057	0.04	135	209.95	144752	5.41
82	117.15	2348	0.09	136	210.95	1373512	51.29
83	118.05	1526	0.06	137	211.90	90130	3.37
84	119.15	6605	0.25	138	212.90	2679	0.10
85	120.15	2802	0.10	139	222.95	12665	0.47
86	121.15	12652	0.47	140	223.95	1014487	37.88
87	122.15	19920	0.74	141	224.95	82010	3.06
88	123.05	13584	0.51	142	225.95	721593	26.94
89	124.15	9325	0.35	143	226.90	49569	1.85
90	125.10	9180	0.34	144	227.95	2184	0.08
91	125.95	8251	0.31	145	235.00	1177	0.04
92	126.90	103833	3.88	146	236.05	31688	1.18
93	127.95	45511	1.70	147	$\underline{236.95}$	2450420	91.50
94	128.85	5403	0.20	148	237.95	229233	8.56
95	131.10	1033	0.04	149	238.95	1762487	65.81
96	133.10	320	0.01	150	239.90	142146	5.31
97	134.05	1098	0.04	151	240.90	5649	0.21
98	135.05	1036	0.04	152	265.05	1249	0.05
99	136.15	1239	0.05	153	266.00	36438	1.36
100	137.15	2801	0.10	154	267.00	8466	0.32
101	138.15	9082	0.34	155	268.00	24346	0.91
102	139.10	73847	2.76	156	268.90	5393	0.20

The relative abundances of $239\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}, 237\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right]^{+}$are $65.81,91.50$.

$$
\frac{\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}}{\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}+\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right]^{+}}=\frac{65.81}{65.81+91.50}=41.835 \%
$$

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{I}^{16} \mathrm{O}$
Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{I}^{16} \mathrm{O}$
Exact Mass: 248.9776
Molecular Weight: 249.0644
$\mathrm{~m} / \mathrm{z}: 248.9776(100.0 \%), 249.9810(8.7 \%)$
Elemental Analysis: $\mathrm{C}, 38.58 ; \mathrm{H}, 4.05 ; \mathrm{I}, 50.95 ; \mathrm{O}, 6.42$
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{I}^{18} \mathrm{O}$
Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{I}^{18} \mathrm{O}$
Exact Mass: 250.9819
Molecular Weight: 251.0686
$\mathrm{~m} / \mathrm{z}: 250.9819(100.0 \%), 251.9852(8.7 \%)$
Elemental Analysis: $\mathrm{C}, 38.27 ; \mathrm{H}, 4.01 ; \mathrm{I}, 50.55 ; \mathrm{O}, 7.17$

Sample Information
E:\msmlwmy-3-83_2011-74_5.qgd

Spectrum
Linell:1 RTime:4.4(Scan\#:711)
MassPeaks: 128
RawMode:Single 4.4(711) BascPeak:237(3227123)
BG Mode:4.3(686) Group 1 - Event 1

Mass Table
Line\#:1 R.Time:4.4(Scan\#:711)
MassPeaks:128
RawMode:Single 4.4(711) BasePeak:237(3227123) BG Mode:4.3(686) Group 1 - Event 1

$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.	$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.
1	36.00	4259	0.13	25	61.05	8801	0.27
2	37.05	18702	0.58	26	61.95	12951	0.40
3	38.05	91704	2.84	27	63.05	26477	0.82
4	39.05	1061994	32.91	28	64.05	7385	0.23
5	40.05	109710	3.40	29	65.05	59458	1.84
6	41.05	1377324	42.68	30	66.05	47386	1.47
7	42.05	164423	5.10	31	67.05	185732	5.76
8	43.05	547514	16.97	32	68.05	60281	1.87
9	44.05	14932	0.46	33	69.05	259047	8.03
10	45.05	17654	0.55	34	70.05	18155	0.56
11	46.05	2245	0.07	35	71.05	10215	0.32
12	47.10	1119	0.03	36	72.05	2440	0.08
13	49.05	9309	0.29	37	73.05	1539	0.05
14	50.00	115577	3.58	38	74.00	6002	0.19
15	51.00	215786	6.69	39	75.00	3406	0.11
16	52.05	178792	5.54	40	76.05	3697	0.11
17	53.05	1860685	57.66	41	77.05	129498	4.01
18	54.05	1757780	54.47	42	78.05	28688	0.89
19	55.05	905906	28.07	43	79.05	283074	8.77
20	56.05	143675	4.45	44	80.05	33699	1.04
21	57.05	1762054	54.60	45	81.05	298916	9.26
22	58.10	87289	2.70	46	82.05	166564	5.16
23	59.00	8230	0.26	47	83.05	140799	4.36
24	60.05	2828	0.09	48	84.10	45250	1.40

$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.	$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.
49	85.05	532319	16.50	89	140.95	20323	0.63
50	86.10	34099	1.06	90	151.90	10855	0.34
51	87.00	3935	0.12	91	152.90	33878	1.05
52	89.05	2703	0.08	92	153.95	2654	0.08
53	90.15	1479	0.05	93	154.90	18852	0.58
54	91.05	45800	1.42	94	163.85	2411	0.07
55	92.10	15506	0.48	95	164.90	8772	0.27
56	93.10	56910	1.76	96	165.95	7192	0.22
57	94.10	16002	0.50	97	166.95	8590	0.27
58	95.05	174018	5.39	98	167.95	1522	0.05
59	96.10	69404	2.15	99	168.90	10226	0.32
60	97.05	1155444	35.80	100	178.95	8632	0.27
61	98.05	86844	2.69	101	179.95	7847	0.24
62	99.00	5462	0.17	102	180.95	472019	14.63
63	103.05	4027	0.12	103	181.95	28741	0.89
64	104.15	1592	0.05	104	182.90	1562	0.05
65	105.10	13620	0.42	105	192.80	1409	0.04
66	106.05	3988	0.12	106	193.85	3769	0.12
67	107.10	6761	0.21	107	194.90	2466	0.08
68	108.10	5105	0.16	108	195.85	1325	0.04
69	109.10	64631	2.00	109	205.75	1621	0.05
70	110.10	133284	4.13	110	206.95	2903	0.09
71	111.10	22759	0.71	111	207.95	31324	0.97
72	111.90	1530	0.05	112	208.90	2702919	83.76
73	114.80	1393	0.04	113	209.90	178177	5.52
74	117.30	1318	0.04	114	210.85	11772	0.36
75	119.00	2937	0.09	115	220.90	1726	0.05
76	120.15	1036	0.03	116	221.95	1031	0.03
77	121.10	7306	0.23	117	222.95	15165	0.47
78	122.10	2690	0.08	118	223.90	1375593	42.63
79	123.15	8950	0.28	119	224.90	104665	3.24
80	124.10	8681	0.27	120	225.85	6547	0.20
81	125.95	1925	0.06	121	234.95	1205	0.04
82	126.90	62526	1.94	122	235.95	23282	0.72
83	127.95	29915	0.93	123	236.95	3227123	100.00
84	128.90	2356	0.07	124	237.90	294095	9.11
85	137.15	1325	0.04	125	238.90	17948	0.56
86	138.15	4412	0.14	126	265.05	1006	0.03
87	139.10	65801	2.04	127	266.00	38471	1.19
88	139.90	7145	0.22	128	267.05	5884	0.18
						0.19	0

The relative abundances of $239\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}, 237\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right]^{+}$are $0.56,100$.

$$
\frac{\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}}{\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}+\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right]^{+}}=\frac{0.56}{0.56+100}=0.557 \%
$$

Sample Information

E:\msm\wmy-6-44_2012-10-18_6.qgd

Mass Table							
Line\#:1 R.Time:6.5(Scan\#:1346)							
MassPeaks:116							
RawMode:Single 6.5(1346) BasePeak:141(186299)							
BG Mode:6.4(1325) Group 1 - Event 1							
\#	m/z	Abs. Int.	Rel. Int.	\#	m / z	Abs. Int.	Rel. Int.
1	38.05	1595	0.86	25	68.00	2226	1.19
2	39.00	12774	6.86	26	69.05	9126	4.90
3	40.05	2932	1.57	27	69.95	3281	1.76
4	41.10	24544	13.17	28	70.95	4042	2.17
5	42.05	2041	1.10	29	73.05	1826	0.98
6	43.10	9028	4.85	30	74.00	1222	0.66
7	45.05	9990	5.36	31	75.05	2030	1.09
8	50.15	2544	1.37	32	76.10	1017	0.55
9	51.10	5382	2.89	33	77.10	14061	7.55
10	52.05	2808	1.51	34	78.10	3552	1.91
11	53.05	5742	3.08	35	79.05	10647	5.72
12	54.05	1750	0.94	36	80.05	3133	1.68
13	55.00	11635	6.25	37	81.00	12640	6.78
14	56.00	858	0.46	38	82.15	3188	1.71
15	57.05	14565	7.82	39	83.10	3174	1.70
16	58.00	2681	1.44	40	84.05	3583	1.92
17	59.05	27640	14.84	41	85.10	3046	1.64
18	60.10	1996	1.07	42	86.15	1097	0.59
19	60.95	4080	2.19	43	86.95	1285	0.69
20	63.00	3135	1.68	44	91.10	10682	5.73
21	64.05	1198	0.64	45	92.05	1363	0.73
22	65.10	14506	7.79	46	93.10	6918	3.71
23	66.00	7816	4.20	47	94.05	1008	0.54
24	67.05	9281	4.98	48	95.05	2511	1.35

\#	m / z	Abs. Int.	Rel. Int.	\#	m / z	Abs. Int.	Rel. Int.
49	96.15	1298	0.70	83	149.05	3882	2.08
50	97.10	3940	2.11	84	150.15	1040	0.56
51	98.00	1906	1.02	85	151.10	1612	0.87
52	99.10	2291	1.23	86	155.05	1761	0.95
53	103.05	3396	1.82	87	160.95	2351	1.26
54	105.20	2643	1.42	88	164.90	1420	0.76
55	107.20	2406	1.29	89	166.95	1232	0.66
56	108.05	1875	1.01	90	173.05	1227	0.66
57	109.00	20987	11.27	91	174.00	1266	0.68
58	110.05	24060	12.91	92	175.00	4441	2.38
59	111.10	9134	4.90	93	177.10	1350	0.72
60	112.15	9925	5.33	94	189.20	2137	1.15
61	113.05	5874	3.15	95	189.95	1376	0.74
62	115.05	5880	3.16	96	190.85	2675	1.44
63	116.05	4154	2.23	97	191.90	1311	0.70
64	117.00	1535	0.82	98	193.20	1215	0.65
65	119.00	1516	0.81	99	203.05	2219	1.19
66	121.05	2863	1.54	100	209.10	2073	1.11
67	123.10	3711	1.99	101	220.85	1255	0.67
68	127.05	3221	1.73	102	221.85	1033	0.55
69	128.05	7495	4.02	103	231.00	1158	0.62
70	129.10	2719	1.46	104	235.90	1126	0.60
71	133.10	307	0.16	105	236.90	1010	0.54
72	134.05	3138	1.68	106	238.80	1062	0.57
73	135.10	3888	2.09	107	251.20	1580	0.85
74	135.95	1431	0.77	108	328.85	4961	2.66
75	137.00	1497	0.80	109	346.90	3058	1.64
76	139.10	50578	27.15	110	348.95	6631	3.56
77	140.15	9981	5.36	111	349.85	1068	0.57
78	141.15	186299	100.00	112	358.00	2905	1.56
79	142.15	20125	10.80	113	376.00	2239	1.20
80	142.95	2718	1.46	114	376.95	1435	0.77
81	147.05	2473	1.33	115	377.95	5714	3.07
82	148.05	2475	1.33	116	378.90	1810	0.97

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{I}^{16} \mathrm{OS}$
Exact Mass: 376.0358
Molecular Weight: 376.2961
$\mathrm{m} / \mathrm{z}: 376.0358$ (100.0\%), 377.0391 (17.3\%), 378.0316 (4.5\%)
Elemental Analysis: C, 47.88; H, 5.63; I, 33.72; O, 4.25; S, 8.52
Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{I}^{18} \mathrm{OS}$
Exact Mass: 378.0400
Molecular Weight: 378.2959
$\mathrm{m} / \mathrm{z}: 378.0400$ (100.0%), 379.0434 (17.0\%), 380.0358 (4.6\%)
Elemental Analysis: C, 47.62; H, 5.60; I, 33.55; O, 4.76; S, 8.48

The relative abundances of $378\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)\right]^{+}, 376\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)\right]^{+}$are $3.07,1.20$

$$
(3.07-1.20 * 4.5 \%) /(3.07-1.20 * 4.5 \%+1.20)=71.54 \%
$$

扫描 778 （6．243 分）：WMY－4－40．D \backslash data．ms

37.15	4085	93． 15	171200	145.15	17608	196.05	4800	250.15	16105
39． 15	322368	95.15	234304	147.05	263680	196.95	4717	251.15	6912
41． 15	627840	96.15	42960	148.15	64408	199.05	6817	252.15	1772
43． 15	369664	97.15	133632	149.05	261696	201． 15	22408	252.95	1463
45.05	133120	98.15	23016	150.15	38344	202． 15	37288	254.05	253
46.05	3963	99.05	20192	151.05	56616	203． 15	69296	254.95	476
47.05	13652	100.05	13292	152.15	11997	204． 15	13782	256.15	433
47.95	406	101.05	34808	153.15	17776	205． 15	16146	256.85	861
50.15	51920	102． 15	31488	154.15	10932	206． 15	13225	258.05	25
51.15	219392	103． 15	124952	155.05	27264	207． 15	24728	259.85	17
52.15	59472	104． 15	22048	156． 15	16245	208． 15	4246	260.95	394
53.15	237120	105.15	129480	157.15	19816	208.95	9091	262.95	601
55.15	473728	106． 15	19064	158.05	11717	210.95	9295	265.05	2413
57.15	1257984	107． 15	35536	159.15	12637	212.95	14839	265.95	720
58.15	83744	109.05	974592	160.05	38840	214.05	1364	267.05	2912
59.15	228672	110.05	1252352	161.05	74208	215． 15	9105	268.95	14211
60.15	11887	111.05	356416	163.05	83624	216.15	4334	269.95	1461
61.05	10838	112.05	68304	164.05	19696	217.15	2800	270.85	950
62.25	11654	113.05	51264	165.05	30616	219.15	77456	272.95	39640
63.15	51744	115.15	208128	166.95	65456	220.15	80280	273.95	4059
65.15	435584	116.15	186816	168.15	7201	221.15	16440	274.95	3230
66.15	252160	117． 15	44952	169.05	15217	222． 15	4625	276.05	2800
67.15	231936	118.15	6768	171.05	26856	223.05	4018	276.95	903
68.15	107624	119.15	15331	172.15	16239	224.15	1670	278.05	302
69.05	331008	121.05	111472	173.05	54008	225.05	1914	278.95	3745
70． 15	37800	123.05	147136	174.15	19200	226.05	1406	280.05	608
71.05	162432	124． 15	19056	175.05	103440	226.95	1739	281.05	1148
72.05	16744	125.05	22264	176.15	27384	228.05	326	281.95	462
73.05	27400	127.05	49728	177.05	88880	229． 15	3360	282． 55	188
74.05	16776	128.05	100160	178.05	25144	231． 15	75688	283． 15	255
75.15	22504	129.15	81264	179.05	18512	232.15	16552	285.95	1772
77． 15	503680	130.15	20256	181.05	9196	233.15	5022	286． 95	2324
78.15	122880	131.15	22864	182.95	13093	234． 15	1201	288． 15	552
79.15	399104	132.05	4539	184.15	6833	235.95	132864	289.05	3421
81.15	659392	134.05	151936	185.05	10438	236.95	31152	290.95	47184
82.15	131712	135.05	262720	186.15	7191	237.95	9993	291.95	5136
83.15	199488	136.05	38952	187.05	40784	238.95	2238	293.05	2273
84.05	93472	137.15	58088	188.15	24432	239.95	1055	294.05	306
85.05	122456	139． 15	8388096	189.15	72976	240.95	1140	295.25	166
86.05	24496	140.15	1204224	190． 15	42872	242.05	631	296.85	707
87.05	29336	141.15	112536	191.15	133504	242.95	755	298.05	304
89.05	35808	142.15	53272	192.15	59720	247.15	13853	299.05	2127
91.15	318848	143.15	29144	193.05	31368	248.15	17408	299.95	813
92.15	55200	144． 15	11928	194.95	25752	249.15	94552	301.05	1010

302.05	1062
303.05	1274
304.05	452
305.05	2887
305.95	538
307.05	259
311.15	189
313.05	2491
314.15	322
315.05	748
316.05	239
317.05	944
319.05	8138
320.05	1252
320.95	427
327.05	194
329.05	384384
330.05	57008
331.05	22776
332.05	2685
333.05	368
334.05	8198
335.05	1142
336.05	305
343.05	261
345.05	11488
347.05	1103872
348.05	166336
349.05	63312
350.05	8964
351.05	839
356.05	160
357.15	1594
358.05	11138
359.15	16408
360.05	2668
361.15	1581
361.95	295
371.55	179
374.05	459
376.15	930496
377.15	160448
378.05	57904
379.15	8180
380.05	771
381.15	205

The relative abundances of $378\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)\right]^{+}, 376\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)\right]^{+}$are 57904, 930496.

Sample Information

E:\msmlwmy-6-45_2012-10-18_7.qgd

Mass Table
Line\#:1 R.Time:4.4(Scan\#:734)
MassPeaks:141
RawMode:Single 4.4(734) BasePeak:237(3527637) BG Mode:None Group 1-Event 1

$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.	$\#$	$\mathrm{~m} / \mathrm{z}$	Abs. Int.	Rel. Int.
1	36.05	3150	0.09	25	60.05	2761	0.08
2	37.05	31836	0.90	26	61.00	12972	0.37
3	38.05	144470	4.10	27	62.00	16377	0.46
4	39.05	1855934	52.61	28	63.00	36076	1.02
5	40.10	205938	5.84	29	64.05	12058	0.34
6	41.10	2481183	70.34	30	65.05	90704	2.57
7	42.05	257800	7.31	31	66.05	72224	2.05
8	43.05	952441	27.00	32	67.05	319970	9.07
9	44.05	29123	0.83	33	68.05	100219	2.84
10	45.10	38534	1.09	34	69.05	492858	13.97
11	46.05	3499	0.10	35	70.10	38271	1.08
12	47.00	1196	0.03	36	71.05	24042	0.68
13	47.95	1123	0.03	37	72.05	1978	0.06
14	49.05	13774	0.39	38	73.05	3145	0.09
15	50.05	148163	4.20	39	74.10	7327	0.21
16	51.05	285607	8.10	40	75.00	6290	0.18
17	52.05	225391	6.39	41	76.15	5570	0.16
18	53.05	2735454	77.54	42	77.05	221713	6.29
19	54.05	2408901	68.29	43	78.05	47486	1.35
20	55.05	1269043	35.97	44	79.10	491020	13.92
21	56.10	195071	5.53	45	80.10	52255	1.48
22	57.10	2518937	71.41	46	81.05	503023	14.26
23	58.10	121311	3.44	47	82.05	266321	7.55
24	59.00	11276	0.32	48	83.05	237594	6.74

\#	m / z	Abs. Int.	Rel. Int.	\#	m / z	Abs. Int.	Rel. Int.
49	84.10	66630	1.89	96	139.10	82162	2.33
50	85.05	792856	22.48	97	139.95	11041	0.31
51	86.05	40178	1.14	98	140.90	32946	0.93
52	87.05	15765	0.45	99	141.90	1068	0.03
53	88.15	1013	0.03	100	151.95	10727	0.30
54	89.05	2787	0.08	101	153.00	49119	1.39
55	90.15	1563	0.04	102	153.95	1821	0.05
56	91.05	72499	2.06	103	154.90	26022	0.74
57	92.05	17854	0.51	104	164.95	12131	0.34
58	93.10	90214	2.56	105	165.95	10754	0.30
59	94.05	17962	0.51	106	166.90	11417	0.32
60	95.05	255886	7.25	107	167.95	1818	0.05
61	96.10	110822	3.14	108	168.90	13305	0.38
62	97.10	2023430	57.36	109	178.90	12306	0.35
63	98.10	142425	4.04	110	179.95	10924	0.31
64	99.05	37005	1.05	111	180.90	598399	16.96
65	100.10	2482	0.07	112	181.90	37036	1.05
66	101.95	1071	0.03	113	182.90	2226	0.06
67	103.00	7794	0.22	114	190.00	1215	0.03
68	104.15	2862	0.08	115	192.95	1414	0.04
69	105.05	27011	0.77	116	193.90	4959	0.14
70	106.15	7482	0.21	117	194.75	2623	0.07
71	107.10	12748	0.36	118	195.80	1612	0.05
72	108.10	7398	0.21	119	205.90	2233	0.06
73	109.10	117465	3.33	120	206.95	4840	0.14
74	110.10	262706	7.45	121	207.95	28953	0.82
75	111.10	41599	1.18	122	208.90	2915078	82.64
76	112.15	7876	0.22	123	209.95	159771	4.53
77	113.10	1055	0.03	124	210.95	51225	1.45
78	115.10	2662	0.08	125	211.95	2069	0.06
79	117.10	1932	0.05	126	219.00	1689	0.05
80	118.05	1068	0.03	127	220.95	1937	0.05
81	119.10	7148	0.20	128	222.95	12195	0.35
82	120.05	2747	0.08	129	223.90	1516479	42.99
83	121.10	13369	0.38	130	224.95	91091	2.58
84	122.05	5611	0.16	131	225.95	24206	0.69
85	123.10	18546	0.53	132	227.00	1234	0.03
86	124.00	11148	0.32	133	235.95	20391	0.58
87	124.95	1546	0.04	134	236.95	3527637	100.00
88	125.95	2301	0.07	135	237.95	264180	7.49
89	126.95	83664	2.37	136	238.95	64847	1.84
90	127.90	57081	1.62	137	239.90	4953	0.14
91	129.10	3705	0.11	138	265.05	1775	0.05
92	133.45	1607	0.05	139	266.00	40806	1.16
93	136.30	2098	0.06	140	267.00	9407	0.27
94	137.15	1351	0.04	141	267.95	1340	0.04
95	138.10	9439	0.27				

The relative abundances of $239\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}, 237\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right) \text {-Et }\right]^{+}$are $1.84,100$

$$
\frac{\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}}{\left[\mathrm{M}\left({ }^{18} \mathrm{O}\right)-\mathrm{Et}\right]^{+}+\left[\mathrm{M}\left({ }^{16} \mathrm{O}\right)-\mathrm{Et}\right]^{+}}=\frac{1.84}{1.84+100}=1.81 \%
$$

$\tau-86-$ - - кum

-43.404

Electronic Supplementary Material (ESI) for Chemical Science

\qquad

-43.279

[^0]: ${ }^{\text {a }}$ A solution of 1a $(0.3 \mathrm{mmol}), \mathrm{CHCl}_{3}\left(4 \mathrm{~mL}\right.$, dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and

[^1]: ${ }^{\text {a }}$ A solution of $\mathbf{1 a}(0.3 \mathrm{mmol}), \mathrm{CHCl}_{3}\left(4 \mathrm{~mL}\right.$, dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and distilled), and EtOH ($30 \mu \mathrm{~L}$) was treated with $\mathrm{I}_{2}(0.45 \mathrm{mmol})$ for 5 min followed by the addition of a solution of BnSH in $\mathrm{CHCl}_{3}\left(0.15 \mathrm{M}, 2 \mathrm{~mL}\right.$, dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and distilled) with stirring. After being stirred for 30 min , the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .{ }^{\mathrm{b}}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. ${ }^{\text {c }} 58 \%$ of E-2a was formed under this condition. ${ }^{\mathrm{d}}$ The reaction was complete in 45 min .

[^2]: ${ }^{\text {a }}$ A solution of $\mathbf{1 a}(0.3 \mathrm{mmol}), \mathrm{CHCl}_{3}\left(4 \mathrm{~mL}\right.$, dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and distilled), and anhydrous EtOH ($30 \mu \mathrm{~L}$) was treated with I_{2} for 5 min at $40{ }^{\circ} \mathrm{C}$ followed by the addition of a solution of BnSH in $\mathrm{CHCl}_{3}\left(0.15 \mathrm{M}, 2 \mathrm{~mL}\right.$, dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and distilled) with stirring. After the reaction completed, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $40{ }^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

[^3]: ${ }^{\text {a }}$ A solution of 1a $(0.3 \mathrm{mmol}), \mathrm{CHCl}_{3}$ (dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and distilled), and anhydrous EtOH was treated with $\mathrm{I}_{2}(1.05 \mathrm{mmol})$ for 5 min at $40^{\circ} \mathrm{C}$ followed by the addition of a solution of $\mathrm{BnSH}(0.3 \mathrm{mmol})$ in CHCl_{3} (dried under reflux over $\mathrm{P}_{2} \mathrm{O}_{5}$ for 5 hours and distilled) with stirring. After the reaction completed, the mixture was quenched with 6 mL of water followed by the addition of a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ at $40{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. ${ }^{\mathrm{c}}$ The reaction was conducted in the absence of BnSH. ${ }^{\mathrm{d}}$ Isolated yield. ${ }^{\mathrm{e}} 0.6 \mathrm{mmol} 1 \mathrm{a}$ and 2 mL of CHCl_{3} were used.

