## Supporting information to

# Induction of 'banana phases' in binary systems composed of bent-core and calamitic mesogens

S. Haddawi<sup>\*</sup>, M.-G. Tamba, G. Pelzl, W. Weissflog, U. Baumeister

\* Chemistry Department, College of Science, Kerbala University, Kerbala, Iraq

Martin-Luther-Universität Halle-Wittenberg, Institut für Physikalische Chemie,

Mühlpforte 1, D-06108 Halle, Germany

#### **Additional Figures:**

#### System A/C



**Figure S1**: X-ray diffraction pattern for the  $B_X$  phase of a partially surface-aligned sample for a mixture of 74 % C and 26 % A at 65 °C on cooling a) original pattern, b) intensity of the isotropic liquid subtracted from the pattern in a) to enhance the maxima of the outer diffuse scattering, c)  $\chi$  scan for the outer diffuse scattering ( $I_{rel} = I_{65 \ C} / I_{95 \ C}$ , isotropic liquid), red and green line:  $\chi$  scans for the inner reflections for comparison.



**Figure S2**: X-ray diffraction patterns of a partially surface-aligned sample for a mixture of 82 % C and 18 % A at two temperatures on cooling: a, c) original patterns, b, d) intensity of the isotropic liquid subtracted from these patterns to enhance the maxima of the outer diffuse scattering, a, b) nematic phase at 74 °C, c, d)  $B_X$  phase at 60 °C e)  $\chi$  scans for the outer diffuse scattering ( $I_{rel} = I_T / I_{95 \circ C, isotropic liquid}$ ), light gray and orange line:  $\chi$  scans for the inner reflections for comparison.

#### System A/D



**Figure S3**: X-ray diffraction patterns of surface-aligned samples on cooling for system A/D, a) mixture of 50 % A and 50 % D, b) mixture of 40 % A and 60 % D, both at 90 °C in the Col<sub>rec</sub> phase, c) mixture of 25 % A and 75 % D at 80 °C in the B<sub>X</sub> phase

#### System B/F



**Figure S4**: a) X-ray diffraction pattern of a surface-aligned sample for a mixture of 60 % **F** and 40 % **B** at 90 °C on cooling: Green, yellow ... reciprocal 2D lattices, green arrows indicating the direction of the maximum diffuse scattering; dashed black ... equator and meridian of the pattern, respectively; blue ... corresponding real 2D lattice, blue rods indicating the two possible orientations of the long molecular axes. The approximate tilt of the *b* axis with respect to the meridian of the pattern is 10°, hence the molecules are tilted with respect to *b* by 17° -10° = 7° or by 17° + 10° = 27°, b)  $\chi$  scan for the outer diffuse scattering (I<sub>rel</sub> = I<sub>90 °C</sub>/I<sub>110 °C, isotropic liquid</sub>), Gaussian fit (red line) for 4 maxima (green lines) to the experimental one (black line)



**Figure S5**: a)  $\chi$  scan for the outer diffuse scattering ( $I_{rel} = I_{92 \circ C}/I_{110 \circ C, isotropic liquid}$ ) in the X-ray diffraction pattern of a surface-aligned sample for a mixture of 70 % F and 30 % B, Gaussian fit (red line) for 4 maxima (green lines) to the experimental one (black line, gray line: layer reflection for comparison) revealing a 18° tilt of the molecules with respect to the normal to the b axis (i.e. to the normal of the "broken" layers)

χ/°

250

300

150

100





**Figure S6**: X-ray diffraction patterns of a surface-aligned sample for a mixture of 84 % **F** and 16 % **B** on cooling, row a) original XRD patterns, row b) intensity of the isotropic liquid at 125 °C subtracted from these patterns for clarity, columns 1, 2) nematic phase at 108 °C, columns 2, 3)  $B_X$  phase at 90 °C, columns 1, 3) WAXD, columns 2, 4) SAXD, c) determination of the maxima for the outer diffuse scattering at 90 °C by fitting 4 Gaussian curves (green lines) to the experimental  $\chi$ -scan (black line, relative intensity  $I_{rel}=I_{100°C}/I_{125°C}$ ) revealing a 13° tilt of the molecules with respect to the layer normal



**Figure S7**: X-ray diffraction patterns for the nematic phases of surface-aligned samples for mixtures of 60 % F / 40 % B [columns 1) WAXD and 2) SAXD, 100 °C] and 70 % F / 30 % B [columns 3) WAXD and 4) SAXD, 102 °C] on cooling, row a) original XRD patterns, row b) intensity of the isotropic liquid at 110 °C subtracted from these patterns for clarity.

#### **Molecular Models**



**Figure S8**: Molecular lengths estimated from modelling in Chem3D, measured for a) the bent-core molecule **A** with two extreme orientations of the all-trans chains with respect to the core (colour and gray scale, respectively; bending angle of the core =  $120^{\circ}$  [1], L = 54.5 Å [2]), and for the most extended conformation of b) **C** and c) **D**.



**Figure S9**: Molecular lengths estimated from modelling in Chem3D, measured for a) the bent-core molecule **B** with two extreme orientations of the all-trans chains with respect to the core (colour and gray scale, respectively; bending angle of the core =  $130^{\circ}$  [2]), b) the most extended conformation of **E**, and c) **F** with two extreme chain orientations.

#### Additional Tables:

Table S1: Data derived from the 2D X-ray patterns for systems A/C, A/D, B/E, and B/F;

T ... temperature (°C),  $2\theta$  ... diffraction angle (°),  $d_{exp}$  ... experimental d value(Å), n ... order of the reflection, h, k ... Miller indices, a, b,  $\gamma$  ... lattice parameters (Å and °, respectively),  $d_{calc}$  ... d value calculated from the layer distance or the lattice parameters, respectively (Å), phases: N ... nematic, SmCP ... polar smectic layer structure, SmCP' ... not clearly specified polar smectic layer structure, presumably undulated, USmCP ... undulated smectic layer structure, Col<sub>rec</sub> ... modulated layer structure with a rectangular 2D lattice, Col<sub>ob</sub> ... modulated layer structure with an oblique 2D lattice, B<sub>X</sub> ... modulated layer structure with a lower degree of order (short-range ordered modulation)

| Compound/      | Phase                | T   | 2 <i>0</i> | <i>d</i> <sub>exp</sub> | n/  | a    | b    | γ | <b>d</b> <sub>calc</sub> | $d_{exp}$ -             |
|----------------|----------------------|-----|------------|-------------------------|-----|------|------|---|--------------------------|-------------------------|
| Mixture        |                      |     |            |                         | hk  |      |      |   |                          | <i>d<sub>calc</sub></i> |
|                |                      |     |            |                         |     |      |      |   |                          |                         |
| A90/C10        | SmCP                 | 90  | 2 4 50     | 36 1                    | 1   |      |      |   | 36.2                     | -0.1                    |
|                | biller               | 70  | 4 870      | 18.1                    | 2   |      |      |   | 18.1                     | 0.0                     |
|                |                      |     | 7 3 3 9    | 12.0                    | 3   |      |      |   | 12.0                     | 0.0                     |
| A60/C40        | Colrec               | 92  | 2.829      | 31.2                    | 11  | 40.1 | 49.6 |   |                          |                         |
|                |                      | -   | 3.562      | 24.8                    | 02  |      |      |   |                          |                         |
|                |                      | 80  | 2.868      | 30.8*                   | 11  | 39.0 | 50.2 |   |                          |                         |
|                |                      |     | 3.526      | 25.1                    | 02  |      |      |   |                          |                         |
| A30/C70        | Col <sub>rec</sub>   | 81  | 2.942      | 30.0                    | 11  | 37.3 | 50.4 |   |                          |                         |
|                |                      |     | 3.504      | 25.2                    | 02  |      |      |   |                          |                         |
|                | Col <sub>rec</sub>   | 75  | 3.010      | 29.4*                   | 11  | 36.2 | 50.4 |   |                          |                         |
|                |                      |     | 3.501      | 25.2                    | 02  |      |      |   |                          |                         |
|                | $B_X$                | 65  | 2.998      | 29.5*                   | 11  | 36.2 | 50.8 |   |                          |                         |
|                |                      |     | 3.477      | 25.4                    | 02  |      |      |   |                          |                         |
| A26/C74        | $B_X$                | 65  | 3.014      | 29.3*                   | 11  | 36.3 | 50.7 |   |                          |                         |
|                |                      |     | 3.479      | 25.4                    | 02  |      |      |   |                          |                         |
| A18/C82        | Ν                    | 74  | 3.892      | 22.7*                   |     |      |      |   |                          |                         |
|                | $B_X$                | 60  | 3.261      | 27.1*                   | 11  | 32.0 | 50.8 |   |                          |                         |
|                |                      |     | 3.471      | 25.4                    | 02  |      |      |   |                          |                         |
|                |                      | 1   |            | System 2                | A/D |      |      |   | 1                        |                         |
| A50/D50        | Col <sub>rec</sub>   | 90  | 2.970      | 29.7                    | 11  | 37.5 | 49.0 |   |                          |                         |
|                |                      |     | 3.609      | 24.4                    | 02  |      |      |   |                          |                         |
| A40/D60        | Col <sub>rec</sub> . | 90  | 2.909      | 30.3                    | 11  | 38.7 | 49.0 |   |                          |                         |
|                |                      |     | 3.604      | 24.5                    | 02  |      | 10.1 |   |                          |                         |
| A25/D75        | $B_X$                | 80  | 3.002      | 29.4                    | 11  | 36.7 | 49.1 |   |                          |                         |
|                |                      | -0  | 3.595      | 24.5                    | 02  |      |      |   |                          |                         |
| A20/D80        | $B_X$                | 70  | 3.588      | 24.6                    | 02  |      |      |   |                          |                         |
| System B/E     |                      |     |            |                         |     |      |      |   |                          |                         |
| B20/E20        | N<br>O CD            | 122 | 1.953      | 45.2*                   | 1   |      |      |   | 50.0                     | 0.7                     |
|                | SmCP                 | 115 | 1./85      | 49.5                    |     |      |      |   | 50.0                     | -0.5                    |
| <b>D70/E20</b> | NT                   | 125 | 3.461      | 23.3                    | 2   |      |      |   | 25.0                     | 0.5                     |
| B/U/E3U        | IN<br>SmCD'          | 125 | 2.104      | 42.0*                   | 1   |      |      |   | 40.2                     | 0.4                     |
|                | SmCP                 |     | 1.806      | 48.9                    |     |      |      |   | 49.5                     | -0.4                    |
|                |                      |     | 3.338      | 24.8                    | 2   |      |      |   | 24./                     | 0.1                     |

### Supplementary Material (ESI) for Soft Matter This journal is (c) The Royal Society of Chemistry 2010

# Table S1: (cont.)

| Compound/   | Phase             | Τ   | 20    | d <sub>exp</sub> | n/ | a    | b    | γ     | <i>d</i> <sub>calc</sub> | $d_{exp}$ - $d_{calc}$ |  |
|-------------|-------------------|-----|-------|------------------|----|------|------|-------|--------------------------|------------------------|--|
| Mixture     |                   |     |       | _                | hk |      |      | -     |                          |                        |  |
| System B/F  |                   |     |       |                  |    |      |      |       |                          |                        |  |
| F           | SmA               | 100 | 3.382 | 26.1             |    |      |      |       | 25.5 <sup>#</sup>        | 0.6                    |  |
|             |                   |     | 6.789 | 13.0             |    |      |      |       | 12.8#                    | 0.2                    |  |
| B75.5/F24.5 | SmCP              | 100 | 1.871 | 47.2             |    |      |      |       | 46.5 <sup>#</sup>        | 0.7                    |  |
| B40/F60     | N                 | 100 | 1.943 | 45.5*            |    |      |      |       |                          |                        |  |
|             | USmCP             | 90  | 1.748 | 50.5             | 11 | 204  | 52.2 |       | 50.5                     | 0.0                    |  |
|             |                   |     | 1.902 | 46.4             | 12 |      |      |       | 46.4                     | 0.0                    |  |
|             |                   |     | 3.355 | 26.3             | 20 |      |      |       | 26.1                     | 0.2                    |  |
|             |                   |     | 3.440 | 25.7             | 21 |      |      |       | 25.9                     | -0.2                   |  |
|             |                   |     | 3.495 | 25.3             | 22 |      |      |       | 25.3                     | 0.0                    |  |
| B30/F70     | N                 | 102 | 2.137 | 41.4*            |    |      |      |       |                          |                        |  |
|             | Col <sub>ob</sub> |     | 1.985 | 44.5             | 11 | 122  | 53.5 | 102.5 | 44.6                     | -0.1                   |  |
|             |                   |     | 3.370 | 26.2             | 02 |      |      |       | 26.2                     | 0.0                    |  |
|             |                   |     | 3.970 | 22.3             | 22 |      |      |       | 22.3                     | 0.0                    |  |
| B16/F84     | N                 | 108 | 2.345 | 37.7*            |    |      |      |       |                          |                        |  |
|             |                   |     | 3.311 | 26.7*            |    |      |      |       |                          |                        |  |
|             | B <sub>X</sub>    | 90  | 2.183 | 40.5*            | 11 | 63.5 | 52.6 |       |                          |                        |  |
|             |                   |     | 3.356 | 26.3             | 02 |      |      |       |                          |                        |  |

\* maximum of the diffuse reflection, <sup>#</sup> layer spacing derived from Guinier patterns

| Mixture          | $V_{\rm Mol,C,D}$ | $V_{\mathrm{Mol,A}}$ | $x_{\rm C,D}$ | $\boldsymbol{x}_{\mathrm{A}}$ | $V_{\rm cell}$      | <b>n</b> <sub>cell</sub> | $n_{\rm C,D,cell}$ | <b>n</b> <sub>A,cell</sub> |
|------------------|-------------------|----------------------|---------------|-------------------------------|---------------------|--------------------------|--------------------|----------------------------|
| A60/C40, crystal | 559.6             | 1289.0               |               |                               | 10342.6             | 10.4                     | 4.1                | 6.2                        |
| liquid           | 712.2             | 1640.5               | 0.4           | 0.6                           | 10342.0<br>at 92 °C | 8.1                      | 3.3                | 4.9                        |
| Average in l.c.  |                   |                      |               |                               |                     | 9.3                      | 3.7                | 5.6                        |
| A30/C70, crystal | 559.6             | 1289.0               | 0.7           | 0.3                           | 9562.6<br>at 65 °C  | 12.3                     | 8.6                | 3.7                        |
| liquid           | 712.2             | 1640.5               |               |                               |                     | 9.7                      | 6.8                | 2.9                        |
| Average in l.c.  |                   |                      |               |                               |                     | 11.0                     | 7.7                | 3.3                        |
| A40/D60, crystal | 522.7             | 1289.0               |               | 0.4                           | 9860.8<br>at 90 °C  | 11.9                     | 7.1                | 4.8                        |
| liquid           | 655.3             | 1640.5               | 0.6           |                               |                     | 9.4                      | 5.6                | 3.8                        |
| Average in l.c.  |                   |                      |               |                               |                     | 10.7                     | 6.4                | 4.3                        |
| A25/D75, crystal | 522.7             | 1289.0               |               | 0.25                          | 9370.2<br>at 80 °C  | 13.1                     | 9.8                | 3.3                        |
| liquid           | 655.3             | 1640.5               | 0.75          |                               |                     | 10.4                     | 7.8                | 2.6                        |
| Average in l.c.  |                   |                      |               |                               | ui 00 C             | 11.8                     | 8.9                | 2.9                        |

**Table S2:** A rough estimate of the numbers of molecules in the cross section of the 2D unitcell for selected mixtures of systems A/C and A/D

 $V_{\text{mol,crystal}}$  ... molecular volume in the crystal calculated using crystal volume increments: Immirzi and Perini [3], average packing coefficient in the crystal k = 0.7 according to Kitaigorodski [4],  $V_{\text{mol,liquid}}$  ... molecular volume in the isotropic liquid, average packing coefficient k = 0.55,  $V_{\text{cell}}$  ... unit cell volume obtained from the lattice parameters and assuming a height of h = 0.52 nm (assuming a stacking in bend direction of the bent-core molecules with a bend angle of  $120^\circ$ ),  $x_A$ ,  $x_{C,D}$  ... molar fraction of compound A and C,D, respectively,  $n_{\text{cell}}$  ... number of molecules in a unit cell with crystal-like density (crystal) according to  $n_{\text{cell}} = V_{\text{cell}/(x_A \cdot V_{\text{mol}A} + \underline{x_{C,D}} \cdot V_{\text{mol}C,D})$ , with liquid-like density according to  $n_{\text{cell}} = n_{\text{cell,crystal}} \cdot 0.55/0.7$ , and in the liquid crystalline phase (Average in 1.c.) estimated as the intermediate between that in the crystalline and the liquid phase, numbers of molecules of compound A and C,D, respectively, in a cell:  $n_{A,\text{cell}} = n_{\text{cell}} \cdot x_A$  and  $n_{C,D,\text{cell}} = n_{\text{cell}} \cdot x_{C,D}$ .

#### **References:**

- [1] G. Pelzl, S. Diele, W. Weissflog, Adv. Mater. 1999, 11, 707-724
- [2] M. W. Schröder, S. Diele, G. Pelzl and W. Weissflog, ChemPhysChem, 2004, 4, 99.
- [3] A. Immirzi, B. Perini, Acta Cryst. Sect. A 1977, 33, 216-218
- [4] A. I. Kitaigorodski, "Molekülkristalle", Akademieverlag Berlin, 1979