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Additional Figures: 
 
 
System A/C 
 

a)  b)  c)  
 
Figure S1: X-ray diffraction pattern for the BX phase of a partially surface-aligned sample for 
a mixture of 74 % C and 26 % A at 65 °C on cooling a) original pattern, b) intensity of the 
isotropic liquid  subtracted from the pattern in a) to enhance the maxima of the outer diffuse 
scattering, c) χ scan for the outer diffuse scattering (Irel = I65 °C /I95 °C, isotropic liquid), red and 
green line: χ scans for the inner reflections for comparison. 
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a)  b)  

c)  d)  e)  
 
Figure S2: X-ray diffraction patterns of a partially surface-aligned sample for a mixture of 82 
% C and 18 % A at two temperatures on cooling: a, c) original patterns, b, d) intensity of the 
isotropic liquid subtracted from these patterns to enhance the maxima of the outer diffuse 
scattering, a, b) nematic phase at 74 °C, c, d) BX phase at 60 °C e) χ scans for the outer 
diffuse scattering (Irel = IT /I95 °C, isotropic liquid), light gray and orange line: χ scans for the inner 
reflections for comparison. 
 
 
 
 
 
 
System A/D 
 

a) b) c)  
Figure S3: X-ray diffraction patterns of surface-aligned samples on cooling for system A/D, 
a) mixture of 50 % A and 50 % D, b) mixture of 40 % A and 60 % D, both at 90 °C in the 
Colrec phase, c) mixture of 25 % A and 75 % D at 80 °C in the BX phase 
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System B/F 
 

a)       b)  
 
Figure S4: a) X-ray diffraction pattern of a surface-aligned sample for a mixture of 60 % F 
and 40 % B at 90 °C on cooling: Green, yellow … reciprocal 2D lattices, green arrows 
indicating the direction of the maximum diffuse scattering; dashed black … equator and 
meridian of the pattern, respectively; blue … corresponding real 2D lattice, blue rods 
indicating the two possible orientations of the long molecular axes. The approximate tilt of the 
b axis with respect to the meridian of the pattern is 10°, hence the molecules are tilted with 
respect to b by 17° -10° = 7° or by 17° + 10° = 27°, b) χ scan for the outer diffuse scattering 
(Irel = I90 °C/I110 °C, isotropic liquid), Gaussian fit (red line) for 4 maxima (green lines) to the 
experimental one (black line) 
 
 
 
 

  
Figure S5: a) χ scan for the outer diffuse scattering (Irel = I92 °C/I110 °C, isotropic liquid) in the X-ray 
diffraction pattern of a surface-aligned sample for a mixture of 70 % F and 30 % B, Gaussian 
fit (red line) for 4 maxima (green lines) to the experimental one (black line, gray line: layer 
reflection for comparison) revealing a 18° tilt of the molecules with respect to the normal to 
the b axis (i.e. to the normal of the “broken” layers) 
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 1) 2) 3) 4) 

a)  

b)  
 

c)  
Figure S6: X-ray diffraction patterns of a surface-aligned sample for a mixture of 84 % F and 
16 % B on cooling, row a) original XRD patterns, row b) intensity of the isotropic liquid at 
125 °C subtracted from these patterns for clarity, columns 1, 2) nematic phase at 108 °C, 
columns 2, 3) BX phase at 90 °C, columns 1, 3) WAXD, columns 2, 4) SAXD, c) 
determination of the maxima for the outer diffuse scattering at 90 °C by fitting 4 Gaussian 
curves (green lines) to the experimental χ-scan (black line, relative intensity Irel=I100°C/I125°C) 
revealing a 13° tilt of the molecules with respect to the layer normal 
 
 1) 2) 3) 4) 

a)  

b)   
 
Figure S7: X-ray diffraction patterns for the nematic phases of surface-aligned samples for 
mixtures of 60 % F / 40 % B [columns 1) WAXD and 2) SAXD, 100 °C] and 70 % F / 30 % 
B [columns 3) WAXD and 4) SAXD, 102 °C] on cooling, row a) original XRD patterns, row 
b) intensity of the isotropic liquid at 110 °C subtracted from these patterns for clarity.
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Molecular Models 
 
 
 
 
 
 
 

a) 51.1 Å b) 28.8 Å c) 28.0 Å 
 62.9 Å 
 
Figure S8: Molecular lengths estimated from modelling in Chem3D, measured for a) the 
bent-core molecule A with two extreme orientations of the all-trans chains with respect to the 
core (colour and gray scale, respectively; bending angle of the core = 120° [1], L = 54.5 Å 
[2]), and for the most extended conformation of b) C and c) D. 
 
 
 
 
 
 
 

a) 51 Å b) 25.2 Å c) 24.2 Å 
 65 Å    26.3 Å 
 
Figure S9: Molecular lengths estimated from modelling in Chem3D, measured for a) the 
bent-core molecule B with two extreme orientations of the all-trans chains with respect to the 
core (colour and gray scale, respectively; bending angle of the core = 130° [2]), b) the most 
extended conformation of E, and c) F with two extreme chain orientations. 
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Additional Tables: 
 
Table S1: Data derived from the 2D X-ray patterns for systems A/C, A/D, B/E, and B/F;  
T … temperature (°C), 2θ ... diffraction angle (°), dexp … experimental d value(Å), n … order 
of the reflection, h, k … Miller indices, a, b, γ … lattice parameters (Å and °, respectively), 
dcalc … d value calculated from the layer distance or the lattice parameters, respectively (Å), 
phases: N … nematic, SmCP … polar smectic layer structure, SmCP’ … not clearly specified 
polar smectic layer structure, presumably undulated, USmCP .. undulated smectic layer 
structure, Colrec … modulated layer structure with a rectangular 2D lattice, Colob … 
modulated layer structure with an oblique 2D lattice, BX … modulated layer structure with a 
lower degree of order (short-range ordered modulation) 
 
Compound/ 
Mixture 

Phase T 2θ 
 

dexp 
 

n/ 
hk

a b γ dcalc 
 

dexp-
dcalc 

 
System A/C 

A90/C10 SmCP 90 2.450 36.1 1    36.2 -0.1 
   4.870 18.1 2    18.1 0.0 
   7.339 12.0 3    12.0 0.0 

A60/C40 Colrec 92 2.829 31.2 11 40.1 49.6    
   3.562 24.8 02      
  80 2.868 30.8* 11 39.0 50.2    
   3.526 25.1 02      

A30/C70 Colrec 81 2.942 30.0 11 37.3 50.4    
   3.504 25.2 02      
 Colrec 75 3.010 29.4* 11 36.2 50.4    
   3.501 25.2 02      
 BX 65 2.998 29.5* 11 36.2 50.8    
   3.477 25.4 02      

A26/C74 BX 65 3.014 29.3* 11 36.3 50.7    
   3.479 25.4 02      

A18/C82 N 74 3.892 22.7*       
 BX 60 3.261 27.1* 11 32.0 50.8    
   3.471 25.4 02      

System A/D 
A50/D50 Colrec 90 2.970 29.7 11 37.5 49.0    

   3.609 24.4 02      
A40/D60 Colrec. 90 2.909 30.3 11 38.7 49.0    

   3.604 24.5 02      
A25/D75 BX 80 3.002 29.4 11 36.7 49.1    

   3.595 24.5 02      
A20/D80 BX 70 3.588 24.6 02      

System B/E 
B50/E50 N 122 1.953 45.2*       

 SmCP 115 1.785 49.5 1    50.0 -0.5 
   3.461 25.5 2    25.0 0.5 

B70/E30 N 125 2.104 42.0*       
 SmCP’  1.806 48.9 1    49.3 -0.4 
   3.558 24.8 2    24.7 0.1 
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Table S1: (cont.) 
 
Compound/ 
Mixture 

Phase T 2θ 
 

dexp 
 

n/ 
hk

a b γ dcalc 
 

dexp-dcalc 
 

System B/F 
F SmA 100 3.382 26.1     25.5# 0.6 
   6.789 13.0     12.8# 0.2 

B75.5/F24.5 SmCP 100 1.871 47.2     46.5# 0.7 
B40/F60 N 100 1.943 45.5*       

 USmCP 90 1.748 50.5 11 204 52.2  50.5 0.0 
   1.902 46.4 12    46.4 0.0 
   3.355 26.3 20    26.1 0.2 
   3.440 25.7 21    25.9 -0.2 
   3.495 25.3 22    25.3 0.0 

B30/F70 N 102 2.137 41.4*       
 Colob  1.985 44.5 11 122 53.5 102.5 44.6 -0.1 
   3.370 26.2 02    26.2 0.0 
   3.970 22.3 22    22.3 0.0 

B16/F84 N 108 2.345 37.7*       
   3.311 26.7*       
 BX 90 2.183 40.5* 11 63.5 52.6    
   3.356 26.3 02      

 
* maximum of the diffuse reflection, # layer spacing derived from Guinier patterns 
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Table S2: A rough estimate of the numbers of molecules in the cross section of the 2D unit 
cell for selected mixtures of systems A/C and A/D 
 

Mixture VMol,C,D VMol,A xC,D xA Vcell ncell nC,D,cell nA,cell 
A60/C40, crystal 559.6 1289.0 10.4 4.1 6.2 

liquid 712.2 1640.5 8.1 3.3 4.9 
Average in l.c.   

0.4 0.6 10342.6 
at 92 °C

9.3 3.7 5.6 
A30/C70, crystal 559.6 1289.0 12.3 8.6 3.7 

liquid 712.2 1640.5 9.7 6.8 2.9 
Average in l.c.   

0.7 0.3 9562.6 
at 65 °C

11.0 7.7 3.3 
A40/D60, crystal 522.7 1289.0 11.9 7.1 4.8 

liquid 655.3 1640.5 9.4 5.6 3.8 
Average in l.c.   

0.6 0.4 9860.8 
at 90 °C

10.7 6.4 4.3 
A25/D75, crystal 522.7 1289.0 13.1 9.8 3.3 

liquid 655.3 1640.5 10.4 7.8 2.6 
Average in l.c.   

0.75 0.25 9370.2 
at 80 °C

11.8 8.9 2.9 
 
Vmol,crystal ... molecular volume in the crystal calculated using crystal volume increments: 
Immirzi and Perini [3], average packing coefficient in the crystal k = 0.7 according to 
Kitaigorodski [4], Vmol,liquid ... molecular volume in the isotropic liquid, average packing 
coefficient k = 0.55, Vcell ... unit cell volume obtained from the lattice parameters and 
assuming a height of h = 0.52 nm (assuming a stacking in bend direction of the bent-core 
molecules with a bend angle of 120°), xA, xC,D … molar fraction of compound A and C,D, 
respectively, ncell ... number of molecules in a unit cell with crystal-like density (crystal) 
according to ncell = Vcell/(xA⋅VmolA+xC,D⋅VmolC,D), with liquid-like density according to ncell = 
ncell,crystal⋅0.55/0.7, and in the liquid crystalline phase (Average in l.c.) estimated as the 
intermediate between that in the crystalline and the liquid phase, numbers of molecules of 
compound A and C,D, respectively, in a cell: nA,cell = ncell⋅xA and nC,D,cell = ncell⋅xC,D. 
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