Supporting Information for "Incorporation of the Dopamine D2L receptor and bacteriorhodopsin within bicontinuous cubic lipid phases. 2. Relevance to *in meso* crystallization of integral membrane proteins in novel lipid systems"

(1) Representative 1-D diffraction plots

In all images the {hkl} reflections corresponding to the particular lipid mesophase adopted are highlighted. Peaks corresponding to a $Q_{II}^{\ D}$ cubic phase are indicated in normal type, peaks corresponding to a $Q_{II}^{\ G}$ cubic phase in bold type and peaks corresponding to a H_{II} phase in italic type. For some plots the intensity has been plotted on a logarithmic scale to visualize less intense peaks.

Incorporation of dopamine D2L receptor within FE

Figure S1. 1D diffraction pattern for FE 40wt% D2L receptor buffer. T=20°C. Peaks corresponding to a $Q_{II}^{\ \ D}$ phase are observed.

Figure S2. 1D diffraction pattern for FE 40wt% D2L receptor at 0.55 mgs/ml. T=20°C. Peaks corresponding to a Q_{II}^{D} phase are observed. The 2-D diffraction pattern is spotty resulting in split peaks.

Figure S3. 1D diffraction pattern for FE 40wt% D2L receptor at 1.1 mgs/ml. T=20°C. Peaks corresponding to a Q_{II}^{D} phase are observed. This corresponds to Fig. 4(A) but with intensity plotted on a linear axis.

Figure S4. 1D diffraction pattern for AE 50wt% D2L receptor buffer. T=15°C. Peaks corresponding to a $Q_{II}^{\ \ D}$ phase are observed.

Figure S5. 1D diffraction pattern for AE 50wt% D2L receptor at 0.55 mgs/ml. T=15°C. Peaks corresponding to a Q_{II}^{D} phase are observed. This corresponds to Fig. 4(B) but with intensity plotted on a linear axis.

Figure S6. 1D diffraction pattern for AE 50wt% D2L receptor at 1.1 mgs/ml. T=15°C. Peaks corresponding to a $Q_{II}^{\ \ D}$ phase are observed.

Figure S7. 1D diffraction pattern for AE 50wt% D2L receptor at 2.2 mgs/ml. T=15°C. Peaks corresponding to a $Q_{II}^{\ \ D}$ phase are observed.

Figure S8. 1D diffraction pattern for FE 40wt% Na K phosphate buffer. T=20°C. Peaks corresponding to a $Q_{II}^{\ D}$ phase are observed

Figure S9. 1D diffraction pattern for FE 40wt% bR at 12 mgs/ml. T=20°C. Peaks corresponding to a $Q_{II}^{\ D}$ phase are observed.

Figure S10. 1D diffraction pattern for FE 40wt% bR at 18 mgs/ml. T=20°C. Peaks corresponding to a Q_{II}^{D} phase are observed. Some additional peaks indicate an element of disorder within the sample at this protein concentration.

Figure S11. 1D diffraction pattern for AE 50wt% bR at 9 mgs/ml. T=9°C. Peaks corresponding to a $Q_{II}^{\ \ D}$ phase are observed.

Figure S12. 1D diffraction pattern for AE 50wt% bR at 18 mgs/ml. T=9°C. Peaks corresponding to a $Q_{II}^{\ \ D}$ phase are observed.

(2) Analysis of bilayer thickness and water channel radius

For a sample of known sample composition, lipid length, l, was calculated from the lattice parameter, a, by using Eq. 1^{18}

$$\Phi_l = 2A_0 \left(\frac{l}{a}\right) + \frac{4\pi\chi}{3} \left(\frac{l}{a}\right)^3 \qquad (1)$$

Where Φ_1 is the percentage of lipid by volume within the sample, and A_0 and χ are the dimensionless surface area and the Euler characteristic of the specific cubic phase $[A_0 = 3.091 (Q_{II}^{\ G}); 1.919 (Q_{II}^{\ D}) \text{ and } \chi = -8 (Q_{II}^{\ G}) \text{ and } -2 (Q_{II}^{\ D})].$

 $\Phi_{\rm l}$, the percentage of lipid by volume within the sample, is calculated from the known sample composition, c, using Eq. 2¹⁹ where $\Phi_{\rm l} = 1$ - $\Phi_{\rm w}$, the water density $\rho_{\rm w} = 1$ g/cm³ and the density of the lipid sample $\rho_{\rm L}$. $\rho_{\rm AE} = 0.92$ g/cm³. $\rho_{\rm FE}$ is not known but is assumed to be the same as phytantriol (Phy) which has a similar branched structure $\rho(\text{Phy}) = 0.94$ g/cm³.

$$\Phi_w = \frac{c}{c + (1 - c)\frac{\rho_w}{\rho_L}}$$
(2)

The water channel radius, $r_{w},$ may then be calculated using Eq. 3. $^{18}\,$

$$r_w = \sqrt{\frac{-A_0 a^2}{2\pi\chi}} - l \tag{3}$$