Supplemental information: Attractive interactions between colloids at the oil-water interface

Bum Jun Park and Eric M. Furst^a Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 USA

I. DOUBLET PARTICLE CHARACTERIZATION

Doublet particles are characterized using scanning electron microscopy (SEM). Figure ?? shows one such particle. The particles consist of two fused spheres with diameters 3.9μ m and a center-to-center separation of approximately 2.2μ m.

FIG. 1. SEM image of a doublet particle.

II. INTERFACIAL TENSION AND THREE-PHASE CONTACT ANGLE

The interfacial tension of the oil-water interface γ_{OW} is measured using a pendant drop [1, 2] in the presence of a monovalent salt (NaCl) and an anionic surfactant (sodium dodecyl sulfate, SDS, Sigma Aldrich) in the aqueous phase, or a nonionic surfactant (sorbitan monooleate, SPAN80, Spectrum Chemicals) in the oil phase. The three-phase contact angle θ_t formed by a small water drop placed on a thin polystyrene film in decane is measured using a goniometer. Although this leads to different absolute values of the contact angle compared to direct measurements [3], the measurements confirm that the contact angle increases with increasing surfactant concentration, as shown in figure 2.

^a Email: furst@udel.edu, Tel: +1 302 831 0102, Fax: +1 302 831 1048, Web: www.che.udel.edu/furst

FIG. 2. Measurements of the (a) interfacial tension γ_{OW} and (b) three-phase contact angle θ_t . Open circles are data for 0.25M NaCl and SDS in the aqueous sub-phase and closed squares are for SPAN 80 added to the decane super-phase.

- E. Stancik, G. Gavranovic, M. Widenbrant, A. Laschitsch, J. Vermant and G. Fuller, *Faraday Discuss*, 2003, 123, 145–156.
- [2] S. Reynaert, P. Moldenaers and J. Vermant, Langmuir, 2006, 22, 4936–4945.
- [3] R. Aveyard, J. Clint and D. Nees, Colloid Polym Sci, 2000, 278, 155–163.