Supporting Information for:

Stimulus Responsive Self-assembly of Gemini AmphiphilicPseudopeptides

Jenifer Rubio,^{*a*} Ignacio Alfonso^{*b*, *} M. Isabel Burguete^{*a*} and Santiago V. Luis^{*a*,*}

^aDepartamento de Química Inorgánica y Orgánica, Universidad Jaume I, Avd. Sos Baynat s/n, Castellón, Spain. Fax: +34 964728214; Tel: +34 964728239; E-mail: luiss@qio.uji.es ^bInstituto de Química Avanzada de Cataluña, IQAC-CSIC, Jordi Girona 18-26, Barcelona, Spain. E-mail: ignacio.alfonso@iqac.csic.es

Table of contents:

General experimental and synthetic procedures	S-2
Copies of the NMR and ESI-MS spectra	S-8
SEM micrographs of compounds from chloroform solutions	S-34
SEM micrographs of compounds from MeOH solutions	S-35
SEM micrographs of compounds from $2:1$ MeOH : H ₂ O solutions	S-36
SEM micrographs of compounds from 2 : 1 MeOH : H_2O solutions in the presence HCl	S-37
NMR spectra of A4Val_a10obenz (3) at different conditions	S-38
NMR studies to check similar trends of compounds	S-4 1
UV spectra of A4Val_a10obenz (3) in MeOH at different concentrations	S-46
UV study of compounds at different concentrations in MeOH at acid pH.	S-47
UV study of compounds with different long aliphatic tail	S-48
UV study of compounds with different amino acid side chain	S-49
UV extinction coefficients at the corresponding maxima for several compounds	S-50
Selected bands of the ATR FT-IR spectra of A4Val_a10obenz at different conditions	S-51
Frontier orbitals (B3LYP/6-31G*) for a simplified fragment of the GAPs	S-57

General

Reagents and solvents were purchased from commercial suppliers (Adrich, Fluka or Merck) and were used without further purification. The C_2 symmetrical bis(amidoamines) were prepared as previously described (see reference 71 of the manuscript)

Electron microscopy

Scanning Electron Microscopy was performed either in a LEO 440I or in a JEOL 7001F microscope with a digital camera. Samples were obtained by slow evaporation of a solution of the compounds (~1-2 mg/ml) directly onto the sample holder, and were conventionally coated previous to the measurement. Transmission Electron Microscopy was carried out in a in a JEOL 2100 microscope at 120 KV. The micrographs were obtained from ~1 mg/ml solutions onto a holey carbon copper grid. The samples were sonicated for 10 minutes previous to the measurement, one drop added onto the grid and collected directly without staining.

NMR spectroscopy

The NMR experiments were carried out on a Varian INOVA 500 spectrometer (500 MHz for ¹H and 125 MHz for ¹³C) or on a Varian UNITY 300 (300 MHz for ¹H and 75 MHz for ¹³C). Chemical shifts are reported in ppm using TMS as a reference.

Infrared spectroscopy

FT-IR spectra were acquired in a JASCO 6200 equipment having a MIRacle Single Reflection ATR Diamond / ZnSe accessory. A 20 mM sample of the corresponding pseudopeptide was prepared and seeded onto the ATR sample holder. The FT-IR spectra were sequentially collected until the complete solvent evaporation. The raw IR data were processed with the JASCO spectral manager software and the deconvolution of the bands was performed with the Origin software, using Gaussian-shaped ideal peaks.

UV and CD spectroscopy

Spectra were recorded with a JASCO J-810 spectropolarimeter at RT. The normalized CD spectra were obtained by transforming the molar circular dichroic absorption data ($\Delta \varepsilon$, cm² mmol⁻¹) using the formula: $\Delta \varepsilon = \theta/(32980Cl)$, in which θ is the measured ellipticity (in mdeg), *C* is the cincentration (in M) and *l* is the pathlength (in cm). Molar extinction coefficients of the UV spectra were obtained by linear regression between the measured absorbance and the sample concentration.

Steady-state fluorescence spectroscopy

Steady-state fluorescence spectra were recorded in a Spex Fluorog 3-11 equipped with a 450 W xenon lamp. Fluorescence spectra were recorded in the front face mode. All the samples were measured in aerated conditions otherwise stated.

Molecular Modeling

All the theoretical calculations were performed with Spartan 06 sofware, using the MMFF level of theory for the geometry optimizations.

General procedure for the reductive amination reaction

Synthesis of A2Val_a10obenz. The corresponding pseudopeptidic bis(amidoamine) precursor (216.0 mg, 0.836 mmol) was dissolved in 5 mL of CHCl₃ and the solution was placed inside a flask under nitrogen atmosphere. Then, 4-decyloxybenzaldehyde (476.1 μ L, 452.3 mg, 1.672 mmol) was dissolved in 5 mL of CHCl₃, this solution was added over the solution of the diamine and afterwards, 7 mL of CHCl₃ were added until a final volume of 17 mL (0.05 M final concentration each). The mixture was stirred overnight, then a large excess of Py·BH₃ (889.0 μ L, 817.9 mg, 8.36 mmol) was carefully added at 35 °C, and the mixture was allowed to react for 24 h before being hydrolyzed (conc. HCl, to acidity) and evaporated to dryness. The residue obtained was dissolved in water, basified with 1N NaOH, and extracted with CHCl₃. The combined organic layers were dried (MgSO₄) and evaporated in vacuum. The product was purified by flash chromatography on silica gel using CH₂Cl₂ as eluent, increasing slowly the polarity with MeOH and several drops of aqueous ammonia.

Yield = 63%; mp 95-104 °C; $[\alpha]_D^{25}$ = -27.0 (c = 0.01, CHCl₃); IR (ATR) 3303, 2921, 2851, 1641, 1555, 1513 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.79 (m, 18H), 0.86 (m, 24H), 1.23 (m, 4H), 1.38 (s, 2H), 1.48 (m, 4H), 1.7 (m, 2H), 2.01 (m, 2H), 2.87 (m, 4H), 3.35 (dd, 2H, J = 5.2, 8.1 Hz), 3.45 (dd, 2H, J = 5.4, 8.2 Hz), 3.61 (t, 4H, J=6.6 Hz), 6.77 (d, 4H, J = 6.77 Hz), 7.10 (d, 4H, J = 7.10 Hz), 7.53 (s, 2H); 13 C-NMR (125 MHz, CDCl₃) δ 14.3, 18.0, 19.8, 22.9, 26.3, 29.5, 29.8, 29.9, 31.5, 32.1, 39.6, 53.1, 68.0, 68.3, 114.8, 129.5, 131.7, 158.7, 174.7; HRMS (ESI-TOF)⁺ measured for $C_{46}H_{78}N_4O_4$ (M + H)⁺: 751.6101; found 751.6102; Anal. Calcd. for C₄₆H₇₈N₄O₄·H₂O: C, 71.93; H, 11.17; N, 6.70; found: C, 71.83; H, 10.98; N, 6.90. A small ammount of the monoalkylated by-product was also isolated: Yield = 5%; mp 78-82 °C; $[\alpha]_D^{25} = -2.5$ (c = 0.01, CHCl₃); IR (ATR) 3299, 2958, 2852, 1631, 1553, 1513, 1467, 1244 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.81 (d, 6H, J = 6.7 Hz), 0.87 (m, 3H), 0.95 (d, 6H, J = 6.0 Hz), 1.30 (m, 12H), 1.43 (m, 2H), 1.65 (m, 2H), 1.76 (td, 1H, J = 6.6, 13.0 Hz), 2.08 (m, 1H), 2.25 (m, 1H), 2.96 (s, 1H), 3.19 (s, 1H), 3.40 (t, 4H, J = 12.5 Hz), 3.55 (d, 1H, J = 12.5 Hz), 3.55 (d, 2Hz) 12.8 Hz), 3.69 (d, 1H, J = 11.4 Hz), 3.93 (t, 2H, J = 6.5 Hz), 6.84 (m, 2H), 7.19 (m, 2H), 7.61 (s, 2H), 7.69 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.3, 16.4, 18.1, 19.7, 22.9, 26.3, 29.5, 29.6, 29.8, 31.0, 31.4, 32.1, 39.3, 39.8, 52.9, 60.4, 67.9, 68.3, 114.8, 129.6, 131.4, 158.8, 174.7, 175.1; HRMS (ESI-TOF)⁺ calcd. for $C_{29}H_{52}N_4O_3$ (M + H)⁺: 505.4118; found 505.4114; Anal. Calcd. for C₂₉H₅₂N₄O₃: C, 69.01; H, 10.38; N, 11.10; found: C, 68.85; H, 10.70; N, 11.43.

A3Val a10obenz. Yield = 68%; mp 89-94 °C; $[\alpha]D25 = -35.6$ (c = 0.01, CHCl3); IR (ATR) 3323, 2852, 1631, 1547, 1512, 1467 cm-1; ¹H-NMR (500 MHz, CDCl3) δ 0.88 (t, 6H, J = 6.9 Hz), 0.92 (d, 6H, J = 6.6 Hz), 0.96 (d, 6H, J = 6.9 Hz), 1.30 (m, 24H), 1.44 (m, 4H), 1.67 (m, 2H), 1.76 (m, 4H), 2.15 (td, 2H, J = 13.4, 26.9 Hz), 3.06 (s, 2H), 3.30 (m, 4H), 3.64 (d, 2H, J = 2.9 Hz), 3.77 (d, 2H, J = 12.8 Hz), 3.92 (t, 4H, J = 6.6 Hz), 6.84 (d, 4H, J = 8.4 Hz), 7.25 (d, 4H, J = 8.5 Hz), 7.64 (s, 2H); ¹³C-NMR (125 MHz, CDCl3) 14.3, 18.3, 19.6, 22.9, 26.3, 29.5, 29.6, 29.7, 29.8, 29.9, 30.2, 31.2, 32.1, 36.1, 52.8, 67.8, 68.3, 114.2, 129.9, 130.0, 158.9, 173.9; HRMS (ESI-TOF)⁺ calc for $C_{47}H_{80}N_4O_4$ (M + H)⁺: 765.6258; found 765.6264; Anal. Calcd. for C₄₇H₈₀N₄O₄•2H₂O: C, 70.46; H, 10.57; N, 6.99; found: C, 70.01; H, 10.53; N, 7.13. Monoalkylated by-product: Yield = 15 %; mp 72-78 °C; $[\alpha]_D^{25} = -26.3$ (c = 0.01, CHCl₃); IR (ATR) 3299, 2954, 2922, 2867, 1637, 1542, 1509, 1467, 1245 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.86 (m, 3H), 0.94 (d, 6H, J = 6.9 Hz), 0.99 (d, 6H, J = 6.9 Hz), 1.30 (m, 12H), 1.44 (m, 2H), 1.66 (m, 2H), 1.76 (m, 2H), 2.09 (m, 2H), 2.27 (m, 1H), 2.96 (d, 2H, J = 4.6 Hz), 3.29 (m, 4H), 3.57 (d, 1H, J = 12.9 Hz), 3.70 (d, 1H, J = 12.8 Hz), 3.93 (t, 2H, J = 6.6 Hz), 6.84 (d, 2H, J = 8.7 Hz), 7.20 (d, 2H, J = 8.6 Hz), 7.57 (t, 2H, J = 6.3 Hz), 7.69 (d, 2H, J = 5.5 Hz); ¹³C-NMR (75 MHz, CDCl₃) δ 14.3, 16.7, 18.1, 19.8, 22.9, 26.3, 29.5, 29.6, 29.8, 30.2, 31.2, 31.4, 32.1, 36.0, 53.1, 60.5, 68.0, 68.3, 114.8, 129.7, 131.2, 158.7, 173.2, 174.3; HRMS $(\text{ESI-TOF})^+$ calcd. for $C_{30}H_{54}N_4O_3$ (M + H)⁺: 519.4274; found 519.4273; Anal. Calcd. for C₃₀H₅₄N₄O₃: C, 69.46; H, 10.49; N, 10.80; found: C, 69.27; H, 10.84; N, 10.85.

A4Val_a10obenz. Yield = 66%; mp 85-89 °C; $[\alpha]_D^{25} = -17.8$ (c = 0.01, CHCl₃); IR (ATR) 3302, 2921, 2852, 1632, 1549, 1513 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.87 (m, 12H), 0.93 (d, 6H, J = 6.9 Hz), 1.30 (m, 24H), 1.44 (m, 4H), 1.55 (m, 4H), 1.76 (m, 4H), 1.88 (s, 2H), 2.10 (dt, 2H, J = 6.8, 13.5 Hz), 2.97 (d, 2H, J = 4.3 Hz), 3.29 (tdd, 4H, J = 5.98, 12.1, 24.1 Hz), 3.56 (d, 2H, J = 12.9 Hz), 3.68 (d, 2H, J = 12.9 Hz), 3.92 (t, 4H, J = 6.6 Hz), 6.84 (d, 4H, J = 8.4 Hz), 7.17 (d, 4H, J = 8.3 Hz), 7.35 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.3, 18.0, 19.8, 22.9, 26.3, 27.5, 29.5, 29.6, 29.8, 29.9, 31.4, 32.1, 38.7, 53.1, 68.0, 68.3, 114.8, 129.6, 131.4, 158.8, 173.6; HRMS (ESI-TOF)⁺ calc for C₄₈H₈₂N₄O₄ (M + H)⁺: 779.6414; found 779.6421; Anal. Calcd. for C₄₈H₈₂N₄O₄·H₂O: C, 72.32; H, 10.62; N, 7.03; found: C, 72.44; H, 10.71; N, 7.02. Monoalkylated by-product: Yield = 19 %; mp 65-67 °C; $[\alpha]_D^{25} = -25.3$ (c = 0.01, CHCl₃); IR (ATR) 3300, 2940, 2865, 1637, 1542, 1509, 1457, 1245 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.81 (d, 3H, J = 6.9 Hz), 0.86 (m, 6H), 0.93 (d, 3H, J = 6.9 Hz), 0.97 (d, 3H, J

= 7.0 Hz), 1.31 (m, 12H), 1.43 (m, 2H), 1.53 (m, 4H), 1.76 (m, 2H), 1.88 (s, 1H), 2.08 (m, 1H), 2.27 (qd, 1H, J = 6.7, 13.5 Hz), 2.94 (d, 2H, J = 4.4 Hz), 3.26 (m, 4H), 3.55 (d, 1H, J = 12.8 Hz), 3.66 (d, 1H, J = 12.9 Hz), 3.93 (t, 2H, J = 6.6 Hz), 6.84 (d, 2H, J = 8.4 Hz), 7.16 (d, 2H, J = 8.3 Hz), 7.34 (t, 2H, J = 5.6 Hz), 7.41 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.3, 16.5, 18.0, 19.8, 22.9, 26.3, 27.3, 27.6, 29.5, 29.6, 29.8, 31.0, 31.4, 31.4, 32.1, 38.7, 38.8, 53.1, 60.3, 68.0, 68.3, 114.8, 129.5, 131.6, 158.7, 173.7, 174.2; HRMS (ESI-TOF)⁺ calcd. for C₃₁H₅₆N₄O₃ (M + H)⁺: 533.4431; found 533.4431; Anal. Calcd. for C₃₁H₅₆N₄O₃·2H₂O: C, 65.46; H, 10.63; N, 9.85; found: C, 65.52; H, 10.89; N, 9.36.

A5Val_a10obenz. Yield = 38%; mp 95-96 °C; $[\alpha]D25 = -21.2$ (c = 0.01, CHCl3); IR (ATR) 3310, 2957, 2921, 2851, 1682, 1641, 1510 cm-1; 1H-NMR (500 MHz, CDCl3) δ 0.86 (m, 12H), 0.92 (d, 6H, J = 6.7 Hz), 1.26 (m, 26H), 1.42 (m, 4H), 1.53 (m, 4H), 1.75 (m, 4H), 2.08 (m, 2H), 2.94 (d, 2H, J = 3.8 Hz), 3.25 (m, 4H), 3.55 (d, 2H, J = 12.8 Hz), 3.67 (d, 2H, J = 12.9 Hz), 3.92 (t, 4H, J = 6.3 Hz), 6.84 (d, 4H, J = 8.1 Hz), 7.17 (d, 4H, J = 8.0 Hz), 7.29 (s, 2H); 13C-NMR (125 MHz, CDCl3) δ 14.1, 17.8, 19.6, 22.6, 24.3, 26.0, 29.3, 29.4, 29.4, 29.4, 29.5, 29.5, 31.2, 31.9, 38.7, 52.9, 67.8, 68.0, 114.5, 129.3, 131.4, 158.5, 173.3; HRMS (ESI-TOF)+ calc for C49H84N4O4 (M + H)+: 793.6571; found 793.6565; Anal. Calcd. for C₄₉H₈₄N₄O₄: C, 74.19; H, 10.67; N, 7.06; found: C, 74.38; H, 10.33; N, 7.36. Monoalkylated by-product: Yield = 19%; mp 67-68 °C; $[\alpha]_D^{25}$ = -29.0 (c = 0.01, CHCl₃); IR (ATR) 3296, 2955, 2920, 2852, 1638, 1549, 1511 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.77 (d, 3H, J = 6.9 Hz), 0.83 (m, 6H), 0.89 (d, 3H, J = 6.9 Hz), 0.92 (d, 3H, J = 7.0 Hz), 1.29 (m, 14H), 1.40 (m, 2H), 1.49 (m, 4H), 1.72 (m, 2H), 2.03 (m, 1H), 2.22 (m, 1H), 2.89 (d, 2H, J = 4.6 Hz), 3.14 2H, J = 6.6 Hz), 6.81 (d, 2H, J = 8.5 Hz), 7.13 (d, 2H, J = 8.5 Hz), 7.27 (s, 1H), 7.32 (s, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.0, 16.1, 17.8, 19.6, 19.6, 22.6, 24.2, 26.0, 29.2, 29.3, 29.4, 29.4, 29.5, 29.5, 29.5, 30.8, 31.2, 31.8, 38.6, 38.7, 52.8, 60.1, 67.8, 68.0, 114.5, 129.2, 131.5, 158.4, 173.5, 174.2; HRMS (ESI-TOF)⁺ calc for $C_{32}H_{58}N_4O_3$ (M + H)⁺: 547.4587; found 547.4594; Anal. Calcd. for C₃₂H₅₈N₄O₃·H₂O: C, 68.04; H, 10.71; N, 9.92; found: C, 67.92; H, 10.87; N, 9.94.

A6Val_a10obenz. Yield = 67%; mp 93-95 °C; $[\alpha]_D^{25} = -3.2$ (c = 0.01, CHCl₃); IR (ATR) 3293, 2954, 2922, 2852, 1638, 1553, 1510 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.88 (m, 12H), 0.94 (d, 6H, J = 6.5 Hz), 1.31 (m, 28H), 1.44 (m, 4H), 1.51 (m, 4H), 1.76 (m, 4H), 2.12 (m, 2H), 2.99 (m, 2H), 3.26 (m, 4H), 3.59 (d, 2H, J = 12.8 Hz), 3.70 (d, 2H, J = 12.8 Hz), 3.93 $(t, 4H, J = 6.1 Hz), 6.85 (d, 4H, J = 7.9 Hz), 7.19 (d, 4H, J = 7.9 Hz), 7.33 (s, 2H); {}^{13}C-NMR$ (125 MHz, CDCl₃) δ 14.1, 17.9, 19.5, 22.6, 26.0, 26.4, 29.3, 29.3, 29.4, 29.5, 29.5, 29.7, 31.1, 31.9, 38.7, 52.7, 67.7, 68.1, 114.6, 129.4, 158.6, 172.9; HRMS $(ESI-TOF)^+$ calc for $C_{50}H_{86}N_4O_4$ (M + H)⁺: 807.6121; found 807.6129; Anal. Calcd. for $C_{50}H_{86}N_4O_4$: C, 74.39; H, 10.74; N. 6.94; found: C. 74.44; H. 10.64; N. 6.91. Monoalkylated by-product: Yield = 9%; $\left[\alpha\right]_{D}^{25} = -5.3$ (c = 0.01, CHCl₃); IR (ATR) 3310, 2953, 2922, 2853, 1641, 1613, 1550, 1510 cm^{-1} ; ¹H-NMR (500 MHz, CDCl₃) δ 0.79 (d, 3H, J = 6.9 Hz), 0.84 (m, 6H), 0.91 (d, 3H, J = 7.0 Hz), 0.95 (d, 3H, J = 7.0 Hz), 1.29 (m, 16H), 1.44 (m, 6H), 1.65 (td, 1H, J = 5.6, 11.2 Hz), 1.74 (m, 2H), 2.05 (m, 1H), 2.25 (m, 1H), 2.91 (d, 1H, J = 4.5 Hz), 3.23 (m, 4H), 3.53 (d, 1H, J = 12.9 Hz, 3.65 (d, 1H, J = 12.9 Hz), 3.91 (t, 2H, J = 6.5 Hz), 6.83 (d, 2H, J = 8.4 Hz), 7.15 (d, 2H, J = 8.5 Hz), 7.31 (s, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 14.1, 16.1, 17.7, 19.6, 19.7, 22.6, 26.0, 26.4, 26.5, 29.3, 29.4, 29.5, 29.5, 29.5, 29.6, 29.7, 30.8, 31.2, 31.8, 38.6, 38.7, 52.9, 60.2, 67.8, 68.0, 114.5, 129.2, 131.6, 158.4, 173.5, 174.3; HRMS (ESI-TOF)⁺ calc for $C_{33}H_{60}N_4O_3$ (M + H)⁺: 561.4744; found 561.4752; Anal. Calcd. for $C_{33}H_{60}N_4O_3$: C, 70.67; H, 10.78; N, 9.99; found: C, 71.00; H, 10.51; N, 10.02.

A2Phe_a10obenz. Yield = 66%; mp 131-136 °C; $[\alpha]_D^{25} = -33.4$ (c = 0.01, CHCl₃); IR (ATR) 3345, 3278, 2920, 2851, 1652, 1511, 1468 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.89 (t, 6H, J = 6.6 Hz), 1.32 (m, 24H), 1.42 (m, 4H), 1.75 (m, 4H), 2.77 (m, 2H), 3.15 (d, 2H, J= 13.8 Hz),

3.38 (m, 6H), 3.45 (m, 2H), 3.63 (d, 2H, J = 13.0 Hz), 3.89 (t, 4H, J = 6.5 Hz), 6.76 (d, 4H, J = 8.4 Hz), 6.99 (d, 4H, J = 6.6 Hz), 7.13 (d, 4H, J = 7.3 Hz), 7.20 (t, 4H, J = 7.2 Hz), 7.26 2H, J = 7.3 Hz), 7.43 (s, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 14.1, 22.6, 25.9, 29.1, 29.3, 29.5, 30.2, 31.4, 31.9, 35.1, 38.6, 52.8, 60.2, 68.1, 114.8, 123.9, 124.4, 127.8, 129.0, 129.7, 131.9, 160.1, 171.9; HRMS (ESI-TOF)⁺ calc for $C_{54}H_{78}N_4O_4$ (M + H)⁺: 847.6101; found 847.6115; Anal. Calcd. for C₅₄H₇₈N₄O₄·6H₂O: C, 67.89; H, 9.50; N, 5.86; found: C, 67.85; H, 8.86; N, 5.65. Monoalkylated by-product: Yield = 21%; mp 110-112 °C; $[\alpha]_D^{25} = -26.3$ (c = 0.01, CHCl₃); IR (ATR) 3281, 2922, 2854, 1648, 1509, 1245 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 0.88 (t, 3H, J = 6.6 Hz), 1.30 (m, 14H), 1.43 (s, 1H), 1.75 (m, 2H), 2.15 (s, 2H), 2.73 (m, 2H), 3.19 (m, 2H), 3.34 (m, 4H), 3.50 (d, 1H, J = 13.2 Hz), 3.59 (m, 1H), 3.65 (d, 1H, J = 13.1 Hz), 3.89 (t, 2H, J = 6.6 Hz), 6.77 (d, 2H, J = 8.5 Hz), 7.00 (d, 2H, J = 8.3 Hz), 7.14 (d, 2H, J = 7.5 Hz), 7.19 (d, 2H, J = 7.5 Hz), 7.23 (m, 4H), 7.29 (m, 2H), 7.52 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.3, 22.9, 26.3, 29.5, 29.6, 29.8, 29.9, 30.4, 31.6, 32.1, 39.3, 39.6, 41.1, 52.1, 56.7, 63.1, 68.3, 114.7, 127.1, 127.1, 128.9, 129.0, 129.4, 129.4, 129.5, 137.4, 137.9, 158.7, 164.3, 174.7; HRMS (ESI-TOF)⁺ calcd. for $C_{37}H_{52}N_4O_3$ (M + H)⁺: 601.4117; found 601.4111; Anal. Calcd. for C₃₇H₅₂N₄O₃: C, 73.96; H, 8.72; N, 9.32; found: C, 75.61; H, 8.57; N, 9.13.

A3Phe a10obenz. Yield = 61%; mp 81-83 °C; $[\alpha]_D^{25} = -50.8$ (c = 0.01, CHCl₃); IR (ATR) 3310, 2922, 2852, 1638, 1611, 1541, 1509, 1471, 1245 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.88 (t, 6H, J = 6.5 Hz), 1.27 (m, 24H), 1.43 (m, 4H), 1.58 (m, 2H), 1.68 (s, 2H), 1.75 (m, 4H), 2.75 (dd, 2H, J = 9.3 Hz), 3.18 (m, 6H), 3.37 (dd, 2H, J = 4.3, 9.0 Hz), 3.48 (d, 2H, J = 13.1 Hz), 3.66 (d, 2H, J = 13.1 Hz), 3.91 (t, 4H, J = 6.5 Hz), 6.77 (d, 4H, J = 8.3 Hz), 7.00 (d, 4H, J = 8.2 Hz), 7.16 (d, 4H, J = 6.9 Hz), 7.25 (m, 6H), 7.54 (t, 2H, J = 5.3 Hz); 13 C-NMR (125 MHz, CDCl₃) δ 14.1, 22.6, 26.0, 29.3, 29.4, 29.6, 29.6, 30.0, 31.9, 35.6, 39.3, 52.1, 63.1, 68.1, 114.5, 126.8, 128.7, 129.1, 131.1, 137.5, 158.3, 174.0; HRMS (ESI-TOF)⁺ calc for $C_{55}H_{80}N_4O_4$ (M + H)⁺: 861.6258; found 861.6262; Anal. Calcd. for $C_{55}H_{80}N_4O_4$: C, 76.70; H, 9.36; N, 6.51; found: C, 76.72; H, 9.68; N, 6.25. Monoalkylated by-product: Yield = 19 %; mp 73-76 °C; $[\alpha]_D^{25} = -19.0$ (c = 0.01, CHCl₃); IR (ATR) 3305, 2921, 2850, 1640, 1543, 1510, 1444, 1241 cm⁻¹; ¹H-NMR (300 MHz, CDCl₃) δ 0.88 (t, 3H, J = 6.8 Hz), 1.29 (m, 12H), 1.43 (s, 2H), 1.59 (m, 2H), 1.75 (m, 2H), 2.12 (s, 2H), 2.76 (td, 2H, J = 9.4, 13.7 Hz), 3.19 (m, 6H), 3.39 (dd, 2H, J = 4.4, 9.1 Hz), 3.49 (d, 1H, J = 13.1 Hz), 3.65 (d, 1H, J = 13.2 Hz), 3.90 (m, 2H), 6.77 (d, 2H, J = 8.3 Hz), 6.99 (d, 2H, J = 8.3 Hz), 7.15 (d, 2H, J = 7.1 Hz), 7.26 (m, 8H), 7.56 (s, 1H), 7.63 (s, 1H); ¹³C-NMR (125 MHz, CDCl₃) δ 14.1, 22.6, 26.0, 29.3, 29.3, 29.4, 29.5, 29.5, 29.7, 31.9, 35.7, 39.2, 41.0, 52.1, 56.6, 63.0, 68.1, 114.5, 126.8, 128.6, 128.7, 129.1, 129.2, 129.3, 130.8, 137.3, 137.8, 158.4, 174.0, 174.2; HRMS (ESI-TOF)⁺ calc for $C_{38}H_{54}N_4O_3$ (M + H)⁺: 615.4274; found 615.4278; Anal. Calcd. for $C_{38}H_{54}N_4O_3 \cdot 4H_2O$: C, 66.44; H. 9.10; N. 8.16; found: C. 66.06; H. 9.01; N. 8.55.

A4Phe_a10obenz. Yield = 74%; mp 100-104 °C; $[\alpha]_D^{25} = -47.3$ (c = 0.01, CHCl₃); IR (ATR) 3332, 3286, 2919, 2851, 1631, 1612, 1534, 1509, 1466 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.89 (t, 6H, J = 6.9 Hz), 1.31 (m, 24H), 1.43 (m, 8H), 1.76 (m, 4H), 2.31 (s, 2H), 2.76 (dd, 2H, J = 9.1, 13.8 Hz), 3.18 (d, 2H, J = 4.4 Hz), 3.24 (m, 4H), 3.40 (dd, 2H, J = 4.5, 8.8 Hz), 3.49 (d, 2H, J = 13.1 Hz), 3.62 (d, 2H, J = 13.1 Hz), 3.89 (t, 4H, J = 6.6 Hz), 6.77 (d, 4H, J = 8.5 Hz), 6.98 (d, 4H, J = 8.4 Hz), 7.15 (d, 4H, J = 6.9 Hz), 7.22 (m, 2H), 7.27 (m, 4H), 7.35 (t, 2H, J = 5.6 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 14.1, 22.7, 26.0, 27.0, 29.3, 29.3, 29.4, 29.5, 29.6, 31.9, 38.6, 39.1, 52.0, 63.0, 68.0, 114.5, 126.8, 128.5, 128.7, 129.1, 129.1, 137.3, 158.4, 173.2; HRMS (ESI-TOF)⁺ calc for C₅₆H₈₂N₄O₄ (M + H)⁺: 875.6414; found 875.6419; Anal. Calcd. for C₅₆H₈₂N₄O₄: C, 78.17; H, 11.21; N, 5.46; found: C, 77.76; H, 11.30; N, 5.85. Monoalkylated by-product: Yield = 23 %; mp 97-104 °C; $[\alpha]_D^{25} = -44.6$ (c = 0.01, CHCl₃); IR (ATR) 3292, 2920, 2852, 1639, 1529, 1509, 1466, 1244 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.88 (t, 3H, J = 6.7 Hz), 1.29 (m, 12H), 1.44 (m, 6H), 1.75 (m, 2H), 1.99 (m, 3H), 2.72 (m,

2H), 3.18 (m, 2H), 3.24 (m, 4H), 3.36 (dd, 2H, J = 4.3, 9.1 Hz), 3.47 (d, 1H, J = 13.1 Hz), 3.60 (d, 1H, J = 13.2 Hz), 3.90 (t, 2H, J = 6.6 Hz), 6.77 (d, 2H, J = 8.5 Hz), 6.96 (d, 2H, J = 8.5 Hz), 7.14 (d, 2H, J = 6.9 Hz), 7.22 (m, 6H), 7.27 (m, 2H), 7.50 (s, 2H), 7.54 (s, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 14.1, 22.6, 26.0, 26.9, 27.1, 29.3, 29.3, 29.4, 29.5, 29.5, 31.9, 38.6, 38.7, 39.2, 41.0, 52.1, 56.5, 63.0, 68.1, 114.5, 126.8, 126.8, 128.6, 128.7, 129.0, 129.1, 129.3, 131.0, 137.4, 137.9, 158.4, 173.6, 174.1; HRMS (ESI-TOF)⁺ calcd. for C₃₉H₅₆N₄O₃ (M + H)⁺: 629.4431; found 629.4435; Anal. Calcd. for C₃₉H₅₆N₄O₃: C, 75.77; H, 9.20; N, 7.52; found: C, 75.45; H, 9.50; N, 7.63.

A2Val_a8. Yield = 26%; mp 100-105 °C; $[\alpha]_D^{25}$ = -65.0 (c = 0.01, CHCl₃); IR (ATR) 3288, 3085, 2957, 2921, 2853, 1632, 1556, 1450 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.87 (m, 12H), 0.97 (d, 6H, J = 6.9 Hz), 1.32 (m, 24H), 1.44 (s, 2H), 2.08 (m, 2H), 2.49 (t, 4H, J = 6.9 Hz), 2.86 (d, 2H, J = 3.0 Hz), 3.39 (m, 4H), 7.64 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.3, 18.0, 19.8, 22.9, 27.5, 29.5, 29.7, 30.4, 31.5, 32.0, 39.4, 49.9, 68.7, 175.0; HRMS (ESI-TOF)⁺ calc for C₂₈H₅₈N₄O₂ (M + H)⁺: 483.4638; found 483.4635; Anal. Calcd. for C₂₈H₅₈N₄O₂: C, 69.66; H, 12.11; N, 11.60; found: C, 70.00; H, 12.29; N, 11.30.

A3Val_a8. Yield = 21%; mp 89-90 °C; $[\alpha]_D^{25} = -37.8$ (c = 0.01, CHCl₃); IR (ATR) 3284, 2955, 2923, 2854, 1638, 1557, 1542 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.87 (t, 6H, J = 6.6 Hz), 0.98 (d, 12H, J = 6.9 Hz), 1.27 (m, 20H), 1.36 (s, 2H), 1.44 (td, 4H, J = 6.1, 12.4 Hz), 1.67 (m, 2H), 2.10 (m, 2H), 2.51 (m, 4H), 2.86 (d, 2H, J = 4.5 Hz), 3.29 (m, 4H), 7.57 (s, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.3, 18.0, 19.9, 22.8, 27.5, 29.5, 29.7, 30.4, 31.5, 32.0, 35.9, 49.9, 68.9, 174.6; HRMS (ESI-TOF)⁺ calc for C₂₉H₆₀N₄O₂ (M + H)⁺: 497.4795; found 497.4799; Anal. Calcd. for C₂₉H₆₀N₄O₂: C, 70.11; H, 12.17; N, 11.28; found: C, 70.45; H, 12.40; N, 10.93.

A4Val_a8. Yield = 32%; mp 84-87 °C; $[\alpha]_D^{25}$ = -30.3 (c = 0.01, CHCl₃); IR (ATR) 3281, 2921, 2851, 1637, 1542, 1509, 1466, 1245 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.87 (m, 12H), 0.97 (m, 6H), 1.29 (m, 24H), 1.43 (m, 2H), 1.54 (m, 4H), 2.10 (m, 2H), 2.46 (m, 4H), 2.81 (d, 1H, J = 4.3 Hz), 2.86 (d, 1H, J = 4.3 Hz), 3.23 (m, 2H), 3.33 (m, 2H), 7.35 (m, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 14.0, 17.6, 19.6, 22.6, 27.2, 27.3, 29.2, 29.4, 30.2, 31.2, 31.8, 38.4, 49.7, 68.6, 173.9; HRMS (ESI-TOF)⁺ calc for C₃₀H₆₂N₄O₂ (M + H)⁺: 511.4951; found 511.4958; Anal. Calcd. for C₃₀H₆₂N₄O₂: C, 70.54; H, 12.23; N, 10.97; found: C, 70.45; H, 12.57; N, 10.52.

A4Ala_a10obenz . Yield = 48%; mp 101-103 °C; $[\alpha]_D^{25} = 20.2$ (c = 0.01, CHCl₃); IR (ATR) 3299, 2952, 2918, 2850, 1638, 1622, 1549, 1511 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.81 (t, 6H, J = 6.9 Hz), 1.21 (m, 28H), 1.37 (m, 4H), 1.46 (m, 6H), 1.69 (m, 4H), 3.14 (q, 2H, J = 6.9 Hz), 3.19 (q, 4H, J = 5.9 Hz), 3.55 (d, 2H, J = 12.9 Hz), 3.55 (d, 2H, J = 13.0 Hz), 3.85 (t, 4H, J = 6.6 Hz), 6.77 (d, 4H, J = 8.5 Hz), 7.09 (d, 4H, J = 8.5 Hz), 7.25 (t, 2H, J = 5.8 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 14.1, 19.9, 22.6, 26.0, 27.2, 29.3, 29.4, 29.4, 29.5, 29.5, 31.9, 38.5, 52.1, 57.7, 68.1, 114.6, 129.1, 131.4, 158.4, 174.9; HRMS (ESI-TOF)⁺ calc for $C_{44}H_{74}N_4O_4$ (M + H)⁺: 723.5788; found 723.5790; Anal. Calcd. for $C_{44}H_{74}N_4O_4$: C, 73.09; H, 10.32; N, 7.75; found: C, 72.94; H, 10.11; N, 7.37. Monoalkylated by-product: Yield = 26%; mp 79-82 °C; $[\alpha]_D^{25} = 60.7$ (c = 0.01, CHCl₃); IR (ATR) 3290, 2923, 2857, 1640, 1543, 1519, 1466 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.75 (t, 3H, J = 6.8 Hz), 1.14 (m, 18H), 1.31 (m, 2H), 1.39 (m, 4H), 1.62 (m, 2H), 1.85 (s, 3H), 3.07 (m, 5H), 3.30 (dd, 1H, J = 6.9, 13.8 Hz), 3.48 (d, 1H, J = 12.9 Hz), 3.52 (d, 1H, J = 13.0 Hz), 3.79 (t, 2H, J = 6.5 Hz), 6.70 (d, 2H, J = 8.4 Hz), 7.04 (d, 2H, J = 8.4 Hz), 7.36 (t, 1H, J = 5.7 Hz), 7.42 (s, 1H); 13 C-NMR (125 MHz, CDCl₃) § 14.0, 19.6, 21.6, 22.5, 25.9, 26.8, 27.0, 29.1, 29.2, 29.2, 29.4, 29.4, 31.7, 38.4, 38.5, 50.6, 51.8, 57.4, 67.9, 114.4, 129.0, 131.4, 158.2, 175.0, 175.8; ; HRMS (ESI-TOF)⁺ calc for $C_{27}H_{48}N_4O_3$ (M + H)⁺: 477.3805; found 477.3807; Anal. Calcd. for $C_{27}H_{48}N_4O_3$: C, 68.03; H, 10.15; N. 11.75; found: C. 68.43; H. 10.38; N. 11.57.

A4Leu_a10obenz. Yield = 63%; mp 98-99 °C; $[\alpha]_D^{25} = -19.3$ (c = 0.01, CHCl₃); IR (ATR) 3329, 2956, 2921, 2852, 1643, 1629, 1546, 1509 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.83 (d, 6H, J = 6.2 Hz), 0.89 (m, 12H), 1.38 (m, 28H), 1.60 (m, 6H), 1.76 (m, 4H), 3.17 (dd, 2H, J = 4.2, 8.3 Hz), 3.27 (m, 4H), 3.56 (d, 2H, J = 12.9 Hz), 3.67 (d, 2H, J = 12.9 Hz), 3.91 (t, 4H, J = 6.3 Hz), 6.84 (d, 4H, J = 8.1 Hz), 7.17 (d, 4H, J = 8.1 Hz), 7.38 (s, 2H); ¹³C-NMR (125) MHz, CDCl₃) δ 14.1, 21.8, 22.6, 23.2, 25.1, 26.0, 27.2, 29.3, 29.3, 29.4, 29.5, 29.6, 31.9, 38.5, 42.9, 52.2, 60.8, 68.1, 114.6, 129.3, 131.0, 158.5, 174.5; HRMS (ESI-TOF)⁺ calc for $C_{50}H_{86}N_4O_4$ (M + H)⁺: 807.6727; found 807.6735; Anal. Calcd. for $C_{50}H_{86}N_4O_4 \cdot H_2O$: C, 72.77; H, 10.75; N, 6.75; found: C, 72.73; H, 10.68; N, 6.37. Monoalkylated by-product: Yield = 12%; mp 65-70 °C; $[\alpha]_D^{25}$ = -192.6 (c = 0.01, CHCl₃); IR (ATR) 3326, 2925, 2858, 1631, 1541, 1518 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.83 (m, 15H), 1.38 (m, 15H), 1.53 (m, 4H), 1.63 (m, 5H), 2.06 (s, 3H), 3.11 (m, 1H), 3.23 (m, 4H), 3.32 (m, 1H), 3.52 (d, 1H, J = 12.9 Hz), 3.63 (d, 1H, J = 12.6 Hz), 3.90 (t, 2H, J = 6.3 Hz), 6.81 (d, 2H, J = 8.1 Hz), 7.13 (d, 2H, J = 8.1 Hz), 7.34 (s, 1H), 7.40 (s, 1H); 13 C-NMR (125 MHz, CDCl₃) δ 15.8, 23.2, 23.5, 24.4, 25.0, 25.1, 26.6, 26.8, 27.8, 28.7, 29.0, 31.0, 31.0, 31.1, 31.3, 31.3, 33.6, 40.2, 40.3, 44.8, 45.9, 54.0, 55.3, 62.6, 69.8, 116.3, 130.9, 133.2, 160.2, 176.7, 177.3; HRMS (ESI-TOF)⁺ calc for $C_{33}H_{60}N_4O_3$ (M + H)⁺: 561.4744; found 561.4750; Anal. Calcd. for C₃₃H₆₀N₄O₃: C, 70.67; H, 10.78; N, 9.99; found: C, 70.73; H, 10.88; N, 10.02.

A4Val_a1obenz. Yield = 77%; mp 115-117 °C; $[\alpha]_D^{25}$ = -36.1 (c = 0.01, CHCl₃); IR (ATR) 3303, 2934, 2822, 1634, 1547, 1513, 1455, 1364, 1298, 1242 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.86 (d, 6H, J = 6.8 Hz), 0.93 (d, 6H, J = 6.8 Hz), 1.53 (m, 4H), 2.09 (dd, 2H, J = 6.4, 11.5 Hz), 2.96 (d, 2H, J = 4.1 Hz), 3.27 (dd, 4H, J = 5.9, 14.8Hz), 3.57 (d, 2H, J = 12.9), 3.68 (d, 2H, J = 12.9 Hz), 3.78 (s, 6H), 6.85 (d, 4H, J = 8.2Hz), 7.18 (d, 4H, J = 8.2Hz), 7.33 (s, 2H); ¹³C-NMR (125 MHz, CDCl₃) δ 17.8, 19.5, 27.3, 31.2, 38.5, 52.8, 55.2, 67.7, 113.9, 129.4, 131.4, 158.9, 173.3; HRMS (ESI-TOF)⁺ calc for C₃₀H₄₆N₄O₄ (M + H)⁺: 527.3597; found 527.3596; Anal. Calcd. for C₃₀H₄₆N₄O₄: C, 68.41; H, 8.80; N, 10.64; found: C, 68.64; H, 8.26; N, 10.34.

A4Val_a4obenz. Yield = 70%; mp 98-100 °C; $[\alpha]_D^{25} = -28.95$ (c = 0.01, CHCl₃); IR (ATR) 3307, 2939, 2871, 1633, 1544, 1518, 1459 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.84 (d, 6H, J = 6.9 Hz), 0.93 (m, 12H), 1.46 (q, 4H, J = 7.4, 14.7 Hz), 1.52 (m, 4H), 1.73 (q, 4H, J = 6.5, 14.3 Hz), 1.84 (s, 2H), 2.06 (q, 2H, J = 6.9, 11.6 Hz), 2.92 (d, 2H, J = 4.6 Hz), 3.26 (q, 4H, J = 6.2, 13.1 Hz), 3.53 (d, 2H, J = 12.9 Hz), 3.65 (d, 2H, J = 12.9 Hz), 3.91 (t, 4H, J = 6.5 Hz), 6.82 (d, 4H, J = 8.6 Hz), 7.15 (d, 4H, J = 8.6 Hz), 7.33 (t, 2H, J = 5.7 Hz); 13 C-NMR (125) MHz, CDCl₃) δ 13.8, 17.8, 19.2, 19.6, 27.3, 31.2, 31.3, 38.5, 52.9, 67.7, 67.8, 114.5, 129.3, 131.4, 158.4, 173.5; HRMS (ESI-TOF)⁺ calc for $C_{36}H_{58}N_4O_4$ (M + H)⁺: 611.4536; found 611.4538; Anal. Calcd. for C₃₆H₅₈N₄O₄: C, 70.78; H, 9.57; N, 9.17; found: C, 71.01; H, 9.43; N, 9.19. Monoalkylated by-product: Yield = 12%; mp 65-68 °C; $[\alpha]_D^{25} = -36.41$ (c = 0.01, CHCl₃); IR (ATR) 3294, 3083, 2952, 2871, 1635, 1546, 1518 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ 0.80 (d, 3H, J = 6.9 Hz), 0.85 (d, 3H, J = 6.9 Hz), 0.94 (m, 9H), 1.47 (m, 2H), 1.53 (m, 4H), 1.74 (m, 5H), 2.07 (m, 1H), 2.25 (m, 1H), 2.92 (d, 1H, J = 4.5 Hz), 3.20 (m, 1H),3.27 (m, 4H), 3.54 (d, 1H, J = 12.9 Hz), 3.65 (d, 1H, J = 12.9 Hz), 3.93 (t, 2H, J = 6.5 Hz),6.84 (d, 2H, J = 8.6 Hz), 7.16 (d, 2H, J = 8.5 Hz), 7.33 (t, 1H, J = 5.7 Hz), 7.39 (s, 1H); ¹³C-NMR (125 MHz, CDCl₃) & 13.8, 16.1, 17.7, 19.2, 19.6, 19.6, 27.1, 27.3, 30.8, 31.2, 31.3, 38.5, 38.5, 52.9, 60.1, 67.7, 67.8, 114.5, 129.2, 131.5, 158.4, 173.6, 174.2; HRMS (ESI-TOF)⁺ calc for C₂₅H₄₄N₄O₃ (M + H)⁺: 449.3492; found 449.3500; Anal. Calcd. for C₂₅H₄₄N₄O₃: C, 66.93; H, 9.89; N, 12.49; found: C, 66.98; H, 9.52; N, 12.26.

Copies of the NMR and ESI-MS spectra

A2Val_a10obenz(1)

A5Val_a10obenz (4)

A5Val_a10obenz_m $(4)^{b}$

A2Phe_a10obenz (6)

A4Phe_a10obenz (8)

A4Ala_a10obenz (12)

A4Val_a1obenz (14)

0.95

12.25<u>-</u> 6.23 -王

1.0

19.6
19.2
17.8
13.8
13.8

0.5

1.5

 $\stackrel{31.3}{\swarrow}_{31.2}^{31.3}$

SEM micrographs of compounds from chloroform solutions:

Figure S1. SEM micrographs of (a) A2Val_a10obenz, (b) A3Val_a10obenz, (c) A4Val_a10obenz, (d) A5Val_a10obenz, (e) A6Val_a10obenz, (f) A2Phe_a10obenz, (g) A3Phe_a10obenz, (h) A4Phe_a10obenz, (i) A2Val_a8, (j) A3Val_a8, (k) A4Val_a8, (l) A4Ala_a10obenz, (m) A4Leu_a10obenz, (n) A4Val_a1obenz and (o) A4Val_a4obenz, grown from CHCl₃ solutions. The corresponding scale bars are shown for every picture.

SEM micrographs of compounds from MeOH solutions:

Figure S2. SEM micrographs of (a) A2Val_a10obenz, (b) A3Val_a10obenz, (c) A4Val_a10obenz, (d) A5Val_a10obenz, (e) A6Val_a10obenz, (f) A2Phe_a10obenz, (g) A3Phe_a10obenz, (h) A4Phe_a10obenz, (i) A2Val_a8, (j) A3Val_a8, (k) A4Val_a8, (l) A4Ala_a10obenz, (m) A4Leu_a10obenz, (n) A4Val_a1obenz and (o) A4Val_a4obenz, grown from MeOH solutions. The corresponding scale bars are shown for every picture.

SEM micrographs of compounds from 2 : 1 MeOH : H₂O solutions:

Figure S3. SEM micrographs of (a) A2Val_a10obenz, (b) A3Val_a10obenz, (c) A4Val_a10obenz, (d) A5Val_a10obenz, (e) A6Val_a10obenz, (f) A2Phe_a10obenz, (g) A3Phe_a10obenz, (h) A4Phe_a10obenz, (i) A2Val_a8, (j) A3Val_a8, (k) A4Val_a8, (l) A4Ala_a10obenz, (m) A4Leu_a10obenz, (n) A4Val_a1obenz and (o) A4Val_a4obenz, grown from 2 : 1 MeOH : H₂O solutions. The corresponding scale bars are shown for every picture.

SEM micrographs of compounds from $2:1\ \text{MeOH}:H_2\text{O}$ solutions in the presence of acid (HCl):

Figure S4. SEM micrographs of (a) A2Val_a10obenz, (b) A3Val_a10obenz, (c) A4Val_a10obenz, (d) A5Val_a10obenz, (e) A6Val_a10obenz, (f) A2Phe_a10obenz, (g) A3Phe_a10obenz, (h) A4Phe_a10obenz, (i) A2Val_a8, (j) A3Val_a8, (k) A4Val_a8, (l) A4Ala_a10obenz, (m) A4Leu_a10obenz, (n) A4Val_a1obenz and (o) A4Val_a4obenz, grown from 2 : 1 MeOH : H_2O solutions in the presence of acid (HCl). The corresponding scale bars are shown for every picture.

NMR spectra of A4Val_a10obenz (3) at different conditions:

Figure S5. ¹H NMR spectra of A4Val_a10obenz (3) (500 MHz, 303 K, in CD₃OD) at 1 mM (a), and 20 mM (b).

Figure S6. ¹H NMR spectra of A4Val_a10obenz (3) (500 MHz, 303 K, in CD₃OD) at 1 mM (a), and 20 mM (b).

Figure S7. ¹H NMR spectra of A4Val_a10obenz (3) (500 MHz, 303 K, in $CD_3OD + DCl$) at 1 mM (a), and 20 mM (b).

Figure S8. ¹H NMR spectra of A4Val_a10obenz (3) (500 MHz, 20 mM, in CDCl₃) at 294 K (a), 303 K (b), 313 K (c) and 323 K (d). Assignations of the signals experiencing changes are shown following the arbitrary lettering of the chemical substructure.

Figure S9. ¹H NMR spectra of A4Val_a10obenz (3) (500 MHz, 20 mM, in CD₃OD) at 294 K (a), 303 K (b), 313 K (c) and 323 K (d).

Figure S10. ¹H NMR spectra of A4Val_a10obenz (3) (500 MHz, 20 mM, in $CD_3OD + DCl$) at 294 K (a), 303 K (b), 313 K (c) and 323 K (d).

NMR studies to check similar trends of compounds:

Figure S11. Selected partial ¹H NMR spectra (500 MHz, 303 K, 20 mM) of compound A3Val_a10obenz (2) in CDCl₃ (a) and CD₃OD (b) (A) and compound A5Val_a10obenz (4) in in CDCl₃ (a) and CD₃OD (b) (B). Assignations of the signals are shown following the arbitrary lettering of the chemical substructure.

		Deshielding (ppm)							
	Compound	H1	H1'	H2	H3	H4	Нα	Нβ	Hγ
1	A2Val_a10obenz	0.48	0.61	0.23	0.14	0.05	0.88	0.35	0.15
2	A3Val_a10obenz	0.48	0.58	0.19	0.13	0.06	0.80	0.34	0.12
3	A4Val_a10obenz	0.47	0.59	0.20	0.14	0.07	0.81	0.33	0.13
4	A5Val_a10obenz	0.48	0.59	0.20	0.12	0.06	0.82	0.35	0.13
5	A6Val_a10obenz	0.47	0.58	0.19	0.13	0.06	0.79	0.35	0.12

Table S1. Deshielding values for different GAPs obtained after protonation of the system. From MeOD to MeOD + DCl.

Figure S12. Plot of the temperature dependence of ¹H NMR spectroscopic data of the amine NH protons of A2Val_a10obenz (1) (black), A3Val_a10obenz (2) (red), A4Val_a10obenz (3) (green) and A6Val_a10obenz (5) (cyan) (all at 500 MHz, 20 mM) in CDCl₃.

Table S2.	Temperature	factors	for the	amine NH	protons.
-----------	-------------	---------	---------	----------	----------

	Compound	$\Delta\delta$ NHamine/ ΔT (ppb/K)
1	A2Val_a10obenz	-3.8
2	A3Val_a10obenz	-4.0
3	A4Val_a10obenz	-2.7
5	A6Val_a10obenz	-3.8

Figure S13. Plot of the temperature dependence of ¹H NMR spectroscopic data of the amide NH protons of A2Val_a10obenz (1) (black), A3Val_a10obenz (2) (red), A4Val_a10obenz (3) (green) and A6Val_a10obenz (5) (cyan) (all at 500 MHz, 20 mM) in CDCl₃.

Table S3. Temperature factors for the amide NH protons.

	Compound	$\Delta\delta$ NHamide/ ΔT (ppb/K)
1	A2Val_a10obenz	-2.0
2	A3Val_a10obenz	-1.5
3	A4Val_a10obenz	-1.6
5	A6Val_a10obenz	-2.2

Figure S14. Selected partial ¹H NMR spectra (A signal, 500 MHz, 20 mM, CDCl₃) of compounds A2Val_a10obenz (A), A3Val_a10obenz (B), A4Val_a10obenz (C), A5Val_a10obenz (D) and A6Val_a10obenz (E) at 294 K (a), 303 K (b), 313 K (c) and 323 K (d).

Figure S15. Selected partial ¹H NMR spectra (H1 signal, 500 MHz, 20 mM, CD₃OD + DCl) of compounds A2Val_a10obenz (A), A4Val_a10obenz (B) and A6Val_a10obenz (C) at 294 K (a), 303 K (b), 313 K (c) and 323 K (d).

UV spectra of A4Val_a10obenz (3) in MeOH at different concentrations:

Figure S16. UV spectra of the A4Val_a10obenz (3) in MeOH at different concentrations.

UV study of compounds at different concentrations in MeOH in the presence of acid:

Figure S17. Plot of the UV absorbance at the corresponig π - π * transition (black triangle, right axis), n- π * transition (red square, left axis) and CT band (green square, left axis) in MeOH at acid pH; A2Val_a10obenz (1) (A), A3Val_a10obenz (2) (B), A4Val_a10obenz (3) (C), A5Val_a10obenz (4) (D) and A6Val_a10obenz (5) (E).

UV study of compounds with different long aliphatic tail:

Figure S18. Plot of the variation o UV extinction coefficients at the corresponding maxima due to protonation for A4Val_a10obenz and A4Val_a1obenz.

UV study of compounds with different amino acid side chain:

Figure S19. UV-CD spectra of A4Xxx_a10obenz (Xxx = Ala, Val and Leu) in MeOH.

Figure S20. UV-CD spectra of A4Xxx_a10obenz (Xxx = Ala, Val and Leu) in MeOH in the presence of acid.

Compound	Media	λ _{max} (nm)	ε (M ⁻¹ ·cm ⁻¹)	R
		230	16200 ± 300	0.99876
	MeOH, acid	273	2373 ± 13	0.99989
A2Val_a10obenz		328	1466 ± 24	0.99894
	MOU	230	10414 ± 16	0.9979
	MeOH	273	3231 ± 7	0.9987
		230	17500 ± 200	0.99961
	MeOH, acid	273	1993 ± 14	0.99985
A3Val_a10obenz		328	240 ± 6	0.99822
	MaOII	230	15056 ± 12	0.9994
	меон	273	2258.9 ± 0.7	0.9996
		230	14100 ± 300	0.99882
	MeOH, acid	273	1400 ± 20	0.99949
		328	365 ± 11	0.99762
	MeOH basic	226	8050 ± 90	0.99969
	Meon, basic	276	1447 ± 18	0.99962
	MeOH	226	17900 ± 700	0.992
A4Val a10obenz	MEOII	276	2840 ± 90	0.9941
M+vai_a100bcliz	CHCla	238	5470 ± 130	0.99778
	011013	276*	3000 ± 300	0.93275
	MeOH	230*	2820 ± 110	0.98592
	acid5%HoO	273	399 ± 3	0.99953
	acius /01120	328	273.6 ± 0.5	0.99652
	MeOH,	230*	3200 ± 500	0.82072
	acid10%H ₂ O	273	1584 ± 15	0.99917
	MeOH acid	230	19000 ± 300	0.99907
A5Val a10obenz	meon, acia	273	2010 ± 13	0.99983
noval_aroobeniz	MeOH	227	18130 ± 210	0.99945
		276	2752 ± 17	0.99984
	MeOH acid	230	18700 ± 400	0.99786
A6Val a10obenz	meon, acia	273	2070 ± 30	0.99919
noval_aroobeniz	MeOH	226	16220 ± 180	0.99951
		275	2390 ± 30	0.99935
	CHC12	238	4090 ± 80	0.998
	CHICIS	276	2721 ± 13	0.9991
		226	14770 ± 90	0.99984
	MeOH, acid	275	2242 ± 16	0.99979
A4Val_a1obenz		276	2226 ± 16	0.99979
	MeOH, basic	226	14000 ± 100	0.99972
	,,	276	2082 ± 18	0.99969
	MeOH	226	15780 ± 80	0.99989
		276	2383 ± 15	0.99983
	MeOH, acid	230	18190 ± 230	0.99935
A4Ala a10obenz	,	273	2131 ± 19	0.99967
	MeOH	227	14860 ± 140	0.99966
		276	<u>2349 ± 18</u>	0.99977
	MeOH. acid	227	18600 ± 400	0.99793
A4Leu a10obenz	,	275	2640 ± 50	0.99871
	MeOH	230	20700 ± 400	0.99875
		273	2185 ± 12	0.99988

UV extinction coefficients at the corresponding maxima for several compounds:

Selected bands of the ATR FT-IR spectra of A4Val_a10obenz at different conditions:

Evolution of the ATR FT-IR spectra of A4Val_a10obenz: we monitored the IR spectrum from $CHCl_3$, MeOH and acidic MeOH solutions until complete evaporation of the solvent to dryness. The spectra were normalized considering the area of the analyzed bands in every region.

Amide II (N-H bending) region

Figure S21. Selected regions of several ATR FT-IR spectra of A4Val_a10obenz: (A) amide II in CHCl₃ and (B) amide II in MeOH.

Figure S22. ATR FT-IR spectra (amide A region) evolution of 4Val_a10obenz in acidic MeOH.

Amide I (C=O stretching) and Amide II (N-H bending) regions.

Figure S23. Selected regions of several ATR FT-IR spectra of A4Val_a10obenz: (A) amide I and (B) amide I and II in MeOH with acid.

Evolution of the ATR FT-IR spectra of A4Val_a10obenz upon evaporation of the solvent to dryness.

Figure S24. Solvent evaporation evolution for amide A for A4Val_a10obenz in CHCl₃.

Figure S25. Solvent evaporation evolution for amide I for A4Val_a10obenz in CHCl₃.

Figure S26. Solvent evaporation evolution for amide A for A4Val_a10obenz in MeOH.

Figure S27. Solvent evaporation evolution for amide I for A4Val_a10obenz in MeOH.

Figure S28. Frontier orbitals (B3LYP/6-31G*) for a simplified fragment of the GAPs.