SUPPLEMENTARY INFORMATION

FIG. 1: Chemical structure of the steroid core (a), cholecalciferol (b), and ergocalciferol (c).

FIG. 2: Partial phase diagram of DPPC-ergocalciferol binary mixtures at 98 \pm 2 % relative humidity. Only the L_{α} phase (\blacklozenge) occurs above the chain-melting transition temperature over the whole composition range shown, whereas a variety of phases are observed at lower temperatures. As a function of increasing ergocalciferol concentration, these are: L_{β'} (\mathbf{V}), P_{β'} (\mathbf{A}), P_{β'} (\mathbf{A}) and RC (\mathbf{H}). Ergocalciferol was found to phase separate out of the membrane for $\phi_{ec} > 35$ mol%.

hk	Ι	Phase				
20	100.0	-				
40	42.2	-				
60	1.3	+				
80	2.5	-				
31	0.5	-				
51	5.3	-				
71	2.1	+				

TABLE II: Diffraction data from the $P_{\beta'}^{*}$ phase used to calculate the electron density profile. I denotes the relative intensity of the reflections after geometric corrections. The phases of the reflections were obtained using the pattern recognition method described in the text. $\phi_{cc} = 25 \text{ mol}\%$, T = 10.0°C.

hk	Ι	Phase			
10	100.0	-			
20	28.7	-			
30	0.2	+			
40	10.9	-			
11	1.1	-			
$2\overline{1}$	2.2	-			
21	2.3	-			
$3\overline{1}$	2.9	-			
31	1.3	+			
$4\overline{1}$	3.1	+			

TABLE III: Temperature dependence of the lamellar periodicity d (in Å) in different phases of DPPC-cholecalciferol membranes. The cholecalciferol concentration in the bilayer, ϕ_{cc} , is in mol%. Typical error in d is ± 0.03 Å.

$T^{\circ}C$	40.0	37.5	35.0	30.0	27.5	25.0	22.5	20.0	17.5	15.0	10.0
$P'_{\beta}(\phi_{cc}=7.5)$	62.5	62.6	63.3	65.3	-	65.6	-	67.0	-	67.6	68.2
$P_{\beta}(\phi_{cc}=12.5)$	-	-	62.5	65.4	65.8	65.8	-	68.5	-	68.1	68.1
$P^*_{\beta'}(\phi_{cc}=20.0)$	-	-	-	61.0	-	61.5	-	62.5	-	62.2	62.5
$RC(\phi_{cc}=50.0)$	-	-	-	-	53.2	53.9	56.8	59.0	59.9	60.4	-

TABLE IV: Temperature dependence of the lamellar periodicity d (in Å) in different phases of DPPC-ergocalciferol membranes. The ergocalciferol concentration in the bilayer, ϕ_{ec} , is in mol%. Typical error in d is ± 0.03 Å.

.0
.2
.6
.8

FIG. 3: Diffraction pattern of the RC phase in DPPC-cholecal ciferol membranes showing a weak [31] off-axis reflection. $\phi_{cc} = 50 \text{ mol}\%$, T = 12.5°C.

FIG. 4: Variation of the lattice parameter γ with temperature in the $P_{\beta'}$ (a) and $P_{\beta'}^*$ (b) phases of DPPC-cholecalciferol (\blacksquare) and DPPC-ergocalciferol(\bullet) bilayers. Variation of γ with second concentration in $P_{\beta'}^*$ phase (c). Second concentration is 7.5 mol% in (a) and 20 mol% in (b). T = 10°C in (c). The smooth lines are merely guides to the eye.

FIG. 5: Variation of the bilayer electron density profile with secosteroid concentration at 45° C in the L_{α} phase of DPPCcholecalciferol (a) and DPPC-ergocalciferol (b) bilayers. Phases of the [h0] reflections in all cases are (- - + -) for h going from 1 to 4.

FIG. 6: Variation of the bilayer thickness (d_{pp}) (a) and d-spacing (b) with second concentration at 45°C in the L_{α} phase of DPPC-cholecalciferol (\blacksquare) and DPPC-ergocalciferol(\bullet) bilayers. The smooth lines are merely guides to the eye.

FIG. 7: WAXS patterns of the (a) $P_{\beta} [\phi_{ec} = 15.0 \text{ mol}\%, T = 15.0^{\circ}\text{C}]$, (b) $P_{\beta'}^{*} [\phi_{ec} = 35.0 \text{ mol}\%, T = 15.0^{\circ}\text{C}]$, and (c) RC $[\phi_{ec} = 35.0 \text{ mol}\%, T = 22.5^{\circ}\text{C}]$ phases showing the equatorial reflection from in-plane chain ordering.

FIG. 8: Typical electron density map of the $P_{\beta'}$ phase of DPPC bilayers. Bands labeled w and h correspond to the water and head group regions, whereas that labeled c corresponds to the bilayer mid-plane. Note the much longer modulation wavelength and higher amplitude compared to the $P^*_{\beta'}$ phase of DPPC-secosteroid bilayers.