Supporting Information for "Granular polymer composites"

Ahmad Mohaddespour & Reghan J. Hill^{*} Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A OC5, Canada ⇤Correspondence: Tel.: 514 398 6897; E-mail: reghan.hill@mcgill.ca

September 15, 2012

1 Characteristic ratio for restricted-bond-angle chains

A Matlab computer program was written to generate random walks of chains having *N* monomers, restricted bond angle θ , and fixed bond length *l*. The characteristic ratio $C_{\infty} = R_0^2/[(N-1)l^2]$ is plotted in figure 1 versus *N* for $\theta \leq \pi = 180^{\circ}$ (ideal chains) and $\theta \leq \pi/5 = 36^{\circ}$. The standard deviations of fluctuations about the mean, obtained from $10⁴$ random chain configurations for each *N*, are indicated by the error bars. With $\theta \leq 180^{\circ}$, the data with $N \geq 64$ is well described by a two-parameter model C_{∞} = $C_{\infty}(N \to \infty) - c_1 N^{-1}$, furnishing $C_{\infty}(N \to \infty) \approx 1.001$ (with $c_1 \approx 1.247$). With $\theta \leq 36^{\circ}$, however, the data with $N \geq 64$ is better described by a three-parameter model $C_{\infty} = C_{\infty}(N \to \infty) - c_1 \exp(-N/c_2)$, furnishing $C_{\infty}(N \to \infty) \approx 19.50$ (with $c_1 \approx 6.694$ and $c_2 \approx 81.41$). Note that the standard deviation of the fluctuations in the mean-squared end-to-end distance R_0^2 scale as Nl^2 as $N \to \infty$.

Limiting bond angles to $\theta < 36^{\circ}$ furnished a characteristic ratio that increases from \approx 5 when *N* = 10 toward a plateau $C_{\infty}(N \to \infty) \approx 19.5$ when $N \gtrsim 300$. Quantifying

chain dimensions with $R_0 = l\sqrt{C_{\infty}N} \approx 9.8\sqrt{N}$ mm shows that $R_0 \gtrsim D$ when $N \gtrsim 6$ with $D = 2.5$ cm, and $N \gtrsim 50$ with $D = 7$ cm.

Figure 1: The characteristic ratio C_{∞} versus the number of monomers *N* for ideal chains $(\theta \leq 180^{\circ}, \text{ top})$ and chains with restricted bond angles $\theta \leq 36^{\circ}$ (bottom). Error bars indicate the standard deviations of fluctuations about the mean, obtained by averaging over 10⁴ randomly generated chain configurations. The characteristic ratios as $N \to \infty$, obtained by fitting empirical models (lines) to the data with $N \geq 64$ (lines) are $C_{\infty}(N \rightarrow$ $\infty) \approx 1.001$ ($\theta \le 180^{\circ}$) and 19.50 ($\theta \le 36^{\circ}$).

2 Virial coefficients

The scaled partial molar sphere volume

$$
\bar{V}_s \equiv v_s^{-1} \left(\frac{\partial V}{\partial n_s} \right)_{n_b} = \phi^{-1} - (1 - x_s)[x_s + (1 - x_s)v_b/v_s]\phi^{-2} \left(\frac{\partial \phi}{\partial x_s} \right). \tag{1}
$$

The virial coefficients in the main text

$$
\bar{V}_s^0 = \phi_c^{-1} - \frac{v_b}{v_s} \phi_c^{-2} \left(\frac{\partial \phi}{\partial x_s}\right)_{x_s=0} \tag{2}
$$

and

$$
\bar{V}_s^1 = \frac{v_b}{v_s} \phi_c^{-1} \left(\frac{\partial \bar{V}_s}{\partial x_s}\right)_{x_s=0} \tag{3}
$$

are therefore furnished by experimental measurements of $\phi(x_s)$.

3 Supplementary thermodynamic formulas

Similarly to the main text for sphere (nanoparticle) partial molar volume, the ball (monomer) partial molar volume scaled with the intrinsic ball volume $v_b = 4\pi a_b^3/3$ is

$$
\bar{V}_b \equiv v_b^{-1} \left(\frac{\partial V}{\partial n_b}\right)_{n_s} \tag{4}
$$

$$
= \phi^{-1} + x_s[1 + x_s(v_s/v_b - 1)]\phi^{-2}\left(\frac{\partial\phi}{\partial x_s}\right). \tag{5}
$$

Moreover, to leading order at vanishing sphere mole fraction $(x_s \to 0)$,

$$
\bar{V}_b = \phi_c^{-1} + O(\phi_s^2). \tag{6}
$$

When $a_s \gtrsim l_l$ and, thus, spheres contribute only their intrinsic volume to the mixture, without disturbing the bulk chain packing,

$$
\left(\frac{\partial \phi}{\partial x_s}\right)_{x_s=0} = \frac{v_s}{v_b} (\phi_c - \phi_c^2) \text{ when } \bar{V}_s^0 = 1.
$$
 (7)

Moreover, when $a_s \lesssim l_l$ and, thus, spheres merely fill voids in the bulk chain packing,

$$
\left(\frac{\partial \phi}{\partial x_s}\right)_{x_s=0} = \frac{v_s}{v_b} \phi_c \text{ when } \bar{V}_s^0 = 0.
$$
 (8)

In the dilute regime,

$$
\phi_s \equiv n_s v_s V^{-1} = \frac{x_s v_s \phi}{x_s v_s + (1 - x_s)v_b} \sim x_s \phi_c \frac{v_s}{v_b} \text{ as } x_s \to 0.
$$
\n
$$
(9)
$$

Moreover,

$$
\left(\frac{\partial \bar{V}_s}{\partial x_s}\right)_{x_s=0} = -2\left(1 - \frac{v_b}{v_s}\right)\phi_c^{-2}\left(\frac{\partial \phi}{\partial x_s}\right)_{x_s=0} + \dots
$$
\n
$$
2\frac{v_b}{v_s}\phi_c^{-3}\left(\frac{\partial \phi}{\partial x_s}\right)_{x_s=0}^2 - \frac{v_b}{v_s}\phi_c^{-2}\left(\frac{\partial^2 \phi}{\partial x_s^2}\right)_{x_s=0},\tag{10}
$$

as provided in the main text.

$a_s 2\pi/l_K$	$\bar V^0$	$\bar V^1_s$	$\partial \phi / \partial x_s _{x_s = 0}$	$\partial^2 \phi / \partial x_s^2 _{x_s=0}$
0.322	0.98	7.03	0.57	-2.65
0.483	1.28	-0.62	1.52	-6.86
0.804	1.59	-1.84	5.12	-60.7
1.13	1.76	-1.73	11.0	-360
1.77	1.52	-2.05	59.0	-6710
2.57	1.44	-2.56	198	-22400
3.22	1.36	-2.19	419	-250000

Table 1: Sphere-chain packing at infinite sphere dilution: $N = 21$; $\phi(x_s = 0) \approx 0.416$.

4 Sphere-chain mixture density data

The figures and tables below summarise the principal experimental data (ϕ versus x_s for various *N* and *as*) and various quantities derived from it, as detailed in the main text. Note that Redlich-Kister polynomials of the form

$$
\phi = \sum_{i=0}^{n} b_i (2x_s - 1)^i \tag{11}
$$

were fit to this data using least-squares minimisation, implemented by the Matlab function polyfit. Generally, setting $n \leq 8$ furnished robust estimates of the Redlich-Kister coefficients b_i when fitting to data with $x_s \lesssim 0.5$. Accordingly,

$$
\phi(x_s = 0) = \sum_{i=0}^{n} b_i (-1)^i,
$$
\n(12)

$$
\left(\frac{\partial \phi}{\partial x_s}\right)_{x_s=0} = 2\sum_{i=1}^n ib_i(-1)^{i-1},\tag{13}
$$

$$
\left(\frac{\partial^2 \phi}{\partial x_s^2}\right)_{x_s=0} = 2^2 \sum_{i=2}^n i(i-1)b_i(-1)^{i-2}, \tag{14}
$$

which, in turn, furnish the equations for \bar{V}_s^0 and \bar{V}_s^1 in the main text.

$a_s 2\pi/l_K$	$\bar V^0_s$	$\bar V^1_s$	$\partial \phi / \partial x_s _{x_s = 0}$	$\partial^2 \phi / \partial x_s^2 _{x_s=0}$
0.322	0.611	8.34	0.681	-1.93
0.483	1.14	0.116	1.69	-8.58
0.804	1.84	-2.14	4.06	-41.0
1.13	2.15	-1.75	9.32	-250
1.77	1.91	-2.29	39.0	-2780
2.57	1.58	-3.17	179	-4990
3.22	1.44	-2.90	398	-135000

Table 2: Same as table 1, but with $N = 46$; $\phi(x_s = 0) \approx 0.384$.

Table 3: Same as table 1, but with $N = 100$; $\phi(x_s = 0) \approx 0.377$.

$a_s 2\pi/l_K$	$\bar V^0_s$	$\bar V^1_s$	$\partial \phi / \partial x_s _{x_s = 0}$	$\partial^2 \phi / \partial x_s^2 _{x_s=0}$
0.322	0.288	10.0	0.778	-1.71
0.483	1.04	1.03	1.79	-10.7
0.804	2.28	-1.48	1.89	-10.8
1.13	2.44	-1.00	3.08	-26.2
1.77	2.17	-2.33	26.5	-1320
2.57	1.79	-3.00	145	-6500
3.22	1.64	-2.87	333	-134000

Table 4: Same as table 1, but with $N = 214$; $\phi(x_s = 0) \approx 0.372$.

$a_s 2\pi/l_K$	$\bar V^0_s$	$\bar V^1_s$	$\partial \phi / \partial x_s _{x_s = 0}$	$\partial^2 \phi / \partial x_s^2 _{x_s=0}$
0.322	0.236	12.8	0.790	-2.29
0.483	1.06	0.987	1.75	-10.4
0.804	2.34	-1.45	1.76	-9.31
1.13	2.49	-0.930	2.69	-19.7
1.77	2.21	-2.08	25.7	-307
2.57	1.81	-3.11	145	-5870
3.22	1.65	-2.90	326	-141000

Figure 2: Same as figure 3b in the main text, but with $N = 46$.

Figure 3: Same as figure 3b in the main text, but with $N = 100$.

Figure 4: Same as figure 3b in the main text, but with $N = 214$.

Figure 5: Same as figure 3b in the main text, but with $N = 1000$.

Table 5: Same as table 1, but with $N = 1000$; $\phi(x_s = 0) \approx 0.367$.
 $a_s 2\pi/l_K$ \bar{V}_s^0 \bar{V}_s^1 $\partial \phi/\partial x_s|_{x_s=0}$ $\partial^2 \phi/\partial x_s^2|_{x_s=0}$ $a_s 2\pi/l_K$ \bar{V}^1_s $\frac{\partial^2 \phi}{\partial x_s} \Big|_{x_s=0}$ $\frac{\partial^2 \phi}{\partial x_s^2} \Big|_{x_s=0}$ 0.322 0.140 14.9 0.806 -2.53 0.483 1.01 1.58 1.80 -11.6 0.804 2.39 -1.43 1.65 -8.80 1.13 2.56 -0.811 2.21 -11.0 $1.77 \qquad \quad 2.24 \quad \ -2.00 \qquad \quad \quad 25.3 \qquad \qquad -1370$ 2.57 1.81 -3.23 146 -5230 $3.22 \qquad \quad 1.66 \quad \ -3.22 \qquad \quad \ 332 \qquad \quad \ -82500$