Domain formation in cholesterol/phospholipid membranes exposed to adhesive surfaces or environments -Electronic Supplementary Information (ESI)

Reinhard Lipowsky^{a*}, Tahereh Rouhiparkouhi^a, Dennis E. Discher^b, and Thomas R. Weikl^a

1 Compositions of spectator phases

1.1 Equations for compositions of spectator phases

When the unbound membrane segment undergoes phase separation, its mole fraction $X^{[1]}$ can vary within the interval $X_{\beta} \leq X^{[1]} \leq X_{\alpha}$ whereas the corresponding chemical potential difference $\Delta \mu^{[1]}$ stays at the constant value $\mu_{\alpha\beta} + \Delta U^{[1]}$, see Fig. 4. It now follows from the chemical equilibrium condition $\Delta \mu^{[2]} = \Delta \mu^{[1]}$ that the mole fraction $X^{[2]} = X_*^{[2]}$ of the spectator phase within the bound membrane segment satisfies the equation

$$\mu_{\alpha\beta} + \Delta U^{[1]} = \Delta \mu^{[2]}(X_*^{[2]}) = G(X_*^{[2]}) + \Delta U^{[2]}$$
(1.1)

or

$$\mu_{\alpha\beta} = G(X_*^{[2]}) + \Delta U^{[2]} - \Delta U^{[1]} = G(X_*^{[2]}) + \Delta U \qquad (1.2)$$

with the affinity contrast ΔU .

Likewise, when the bound membrane segment undergoes phase separation, its mole fraction $X^{[2]}$ can vary within the interval $X_{\beta} \leq X^{[2]} \leq X_{\alpha}$ whereas the corresponding chemical potential difference $\Delta \mu^{[2]}$ stays at the constant value $\mu_{\alpha\beta} + \Delta U^{[2]}$, see Fig. 4. It then follows from the chemical equilibrium condition $\Delta \mu^{[1]} = \Delta \mu^{[2]}$ that the mole fraction $X^{[1]} = X_*^{[1]}$ of the spectator phase within the unbound membrane segment satisfies the equation

$$\mu_{\alpha\beta} + \Delta U^{[2]} = \Delta \mu^{[1]}(X_*^{[1]}) = G(X_*^{[1]}) + \Delta U^{[1]}$$
(1.3)

or

$$\mu_{\alpha\beta} = G(X_*^{[1]}) + \Delta U^{[1]} - \Delta U^{[2]} = G(X_*^{[1]}) - \Delta U \,. \tag{1.4}$$

^b Biophysical Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA **1.2** Compositions of spectator phases for negative ΔU

The two equations (1.2) and (1.4) imply that the mole fractions $X_*^{[2]}$ and $X_*^{[1]}$ satisfy the inequalities

$$0 < X_*^{[2]} \le X_\beta(T)$$
 and $X_\alpha(T) \le X_*^{[1]} < 1$ for $\Delta U > 0$
(1.5)

as one can also conclude from the graphical construction in Fig. 4. Furthermore, inspection of this figure shows that these mole fractions approach the values

$$X_*^{[2]} \approx X_\beta(T)$$
 and $X_*^{[1]} \approx X_\alpha(T)$ for small $\Delta U > 0$
(1.6)

as well as

$$X_*^{[2]} \approx 0$$
 and $X_*^{[1]} \approx 1$ for large $\Delta U > 0$. (1.7)

1.3 Small positive values of ΔU

For small positive values of the affinity contrast ΔU , the mole fraction $X_*^{[2]}$ approaches the limiting value $X_*^{[2]} \approx X_\beta(T)$. In order to determine the leading correction term, we expand $\Delta \mu^{[2]}(X_*^{[2]})$ in eqn (1.1) around $X_*^{[2]} = X_\beta$, which leads to

$$\Delta \mu^{[2]} \approx \Delta \mu^{[2]}(X_{\beta}) + (X_{*}^{[2]} - X_{\beta}) \left(\frac{\partial \Delta \mu^{[2]}}{\partial X_{*}^{[2]}}\right)_{X_{\beta}}.$$
 (1.8)

Inserting the identity $\Delta \mu^{[2]}(X_{\beta}) = \mu_{\alpha\beta} + \Delta U^{[2]}$, we obtain the asymptotic equality

$$\Delta \mu^{[2]} \approx \mu_{\alpha\beta} + \Delta U^{[2]} + (X_*^{[2]} - X_\beta) \left(\frac{\partial \Delta \mu^{[2]}}{\partial X_*^{[2]}}\right)_{X_\beta}$$
(1.9)

for small deviations $X_*^{[2]} - X_\beta$. Finally, replacing $\Delta \mu^{[2]}$ in eqn (1.1) by the expansion in eqn (1.9), the mole fraction $X_*^{[2]}$ of the bound spectator phase is found to behave as

$$X_*^{[2]} \approx X_\beta - \frac{\Delta U}{(\partial \Delta \mu^{\text{bo}} / \partial X^{\text{bo}})_{X_\beta}} \quad \text{for small} \quad \Delta U > 0. \quad (1.10)$$

This journal is © The Royal Society of Chemistry [year]

Journal Name, 2010, [vol], 1–3 | 1

^a Theory & Biosystems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany. Fax: +49 331 5679602; Tel: +49 331 5679600; E-mail: lipowsky@mpikg.mpg.de

Likewise, an expansion of $\Delta \mu^{[1]}(X_*^{[1]})$ in eqn (1.3) around $X_*^{[1]} = X_{\alpha}$ leads to

$$X_*^{[1]} \approx X_{\alpha} + \frac{\Delta U}{(\partial \Delta \mu^{\mathrm{un}} / \partial X^{\mathrm{un}})_{X_{\alpha}}} \quad \text{for small} \quad \Delta U > 0. \quad (1.11)$$

Inspection of the expressions (1.10) and (1.11) shows that the temperature-dependence of the mole fractions $X_*^{[2]}$ and $X_*^{[1]}$ is now contained in the binodal lines $X = X_\beta(T)$ and $X_\alpha = X_\alpha(T)$ as well as in the partial derivatives $\partial \Delta \mu / \partial X$ taken at these binodal lines. The latter derivatives can be brought into a more explicit form as follows.

Using the Gibbs-Duhem relation

$$X_a \frac{\partial \mu_a}{\partial X_a} + X_b \frac{\partial \mu_b}{\partial X_a} = 0 \tag{1.12}$$

for a binary mixture with $X_a = X$ and $X_b = 1 - X$, the partial derivatives $\partial \Delta \mu / \partial X$ of the relative chemical potential as defined by eqn (14) in the main text attain the form

$$\frac{\partial \Delta \mu}{\partial X} = \frac{\partial \mu_a}{\partial X} \left(1 + \frac{A_a}{A_b} \frac{X}{1 - X} \right)$$
(1.13)

which reduces to the simpler expression

$$\frac{\partial \Delta \mu}{\partial X} = \frac{1}{1 - X} \frac{\partial \mu_a}{\partial X} \quad \text{for} \quad A_a = A_b \,. \tag{1.14}$$

For the binary phospholipid/cholesterol mixtures considered here, the liquid-liquid coexistence regions are located at mole fractions $X \leq 0.25$, see Fig. 2. Therefore, a simple estimate for the quantity $\partial \mu_a / \partial X$ at $X = X_\beta$ and $X = X_\alpha$ can be obtained from ideal solution theory with

$$\mu_a \approx \mu_a^o + k_B T \ln(X) \,, \tag{1.15}$$

which leads to

$$\left(\frac{\partial \mu_a}{\partial X}\right)_{X_\beta} \approx \frac{k_B T}{X_\beta} \quad \text{and} \quad \left(\frac{\partial \mu_a}{\partial X}\right)_{X_\alpha} \approx \frac{k_B T}{X_\alpha}.$$
 (1.16)

Furthermore, using dimensional analysis, we can always write

$$\left(\frac{\partial \mu_a}{\partial X}\right)_{X_{\beta}} = c_{\beta} \frac{k_B T}{X_{\beta}} \quad \text{and} \quad \left(\frac{\partial \mu_a}{\partial X}\right)_{X_{\alpha}} = c_{\alpha} \frac{k_B T}{X_{\alpha}}.$$
 (1.17)

with dimensionless coefficients c_{β} and c_{α} that should be of order one because of the relations in eqn (1.16).

Inserting the expressions in (1.17) into (1.10) and (1.11), the mole fractions $X_*^{[2]}$ and $X_*^{[1]}$ are found to behave as

$$X_*^{[2]} \approx X_\beta - c_\beta X_\beta (1 - X_\beta) \Delta U / (k_B T) \quad \text{for small } \Delta U > 0$$
(1.18)

and

$$X_*^{[1]} \approx X_{\alpha} + c_{\alpha} X_{\alpha} (1 - X_{\alpha}) \Delta U / (k_B T) \quad \text{for small } \Delta U > 0.$$
(1.19)

The asymptotic equalities in (1.18) and (1.19) are identical to those in eqn (49) and eqn (55) of the main text.

1.4 Compositions of spectator phases for positive ΔU

As explained in Section 5.3 of the main text, the mole fractions $X_*^{[1]}$ and $X_*^{[2]}$ satisfy the symmetry relation

$$X_*^{[2]}(T, -\Delta U) = X_*^{[1]}(T, +\Delta U), \qquad (1.20)$$

which is equivalent to

$$X_*^{[1]}(T, -\Delta U) = X_*^{[2]}(T, +\Delta U), \qquad (1.21)$$

for all values of T and ΔU .

A combination of eqn (1.21) with eqn (1.18) then leads to the asymptotic behavior

$$X_*^{[1]} \approx X_\beta - c_\beta X_\beta (1 - X_\beta) |\Delta U| / (k_B T) \quad \text{for small } \Delta U < 0.$$
(1.22)

Likewise, a combination of eqn (1.20) with eqn (1.19) implies

$$X_*^{[2]} \approx X_\alpha + c_\alpha X_\alpha (1 - X_\alpha) |\Delta U| / (k_B T) \quad \text{for small } \Delta U < 0.$$
(1.23)

The asymptotic equalities in eqn (1.22) and eqn (1.23) are identical with those in eqn (56) and eqn (50) of the main text.

2 Membranes exposed to many environments

We now consider membranes exposed to M different environments and, thus, partitioned into M different segments $\mathscr{S}^{[m]}$ with m = 1, 2, ..., M. As explained in Sect. 7 of the main text, we can choose the index m in such a way that the relative affinities $\Delta U^{[m]}$ are ordered according to

$$\Delta U^{[1]} < \Delta U^{[2]} < \dots < \Delta U^{[M]}, \qquad (2.1)$$

which leads to M - 1 affinity contrasts

$$\Delta U_m \equiv \Delta U^{[m+1]} - \Delta U^{[m]} \text{ for } m = 1, 2, \dots, M - 1. \quad (2.2)$$

In the semigrand canonical ensemble, we have M phase transitions along the demixing curves $\Delta \mu^{[m]} = \mu^{[m]}_{\alpha\beta}(T)$ with

$$\mu_{\alpha\beta}^{[m]}(T) = \mu_{\alpha\beta}(T) + \Delta U^{[m]} \quad \text{for } m = 1, 2, \dots, M$$
 (2.3)

and $T_t < T \le T_c$. Thus, the phase diagram in the $(\Delta \mu, T)$ -plane now consists of *M* curves that are shifted against each other by the affinity contrasts ΔU_m as shown in Fig. S1.

Relative chemical potential Δ

Fig. S1 Phase diagram for two-component membrane exposed to M = 4 different environments as a function of relative chemical potential $\Delta \mu$ and temperature T with $T_t < T \le T_c$. Segment $\mathscr{S}^{[m]}$ phase separates along the demixing line $\Delta \mu = \Delta \mu^{[m]}(T)$. The demixing lines $\Delta \mu^{[m+1]}(T)$ and $\Delta \mu^{[m]}(T)$ are separated by the affinity contrast ΔU_m . Each demixing line ends in a critical point.

In order to determine the compositions of the M segments, we now start from the chemical equilibrium between the Msegments, which is described by the M - 1 equations

$$G(X^{[1]}) + \Delta U^{[1]} = G(X^{[2]}) + \Delta U^{[2]} = \dots = G(X^{[M]}) + \Delta U^{[M]}.$$
(2.4)

The solution of these equations can again be obtained graphically as shown in Fig. S2, which generalized the graphical construction for M = 2 in Fig. 4 to an arbitrary value of M. This graphical solution directly shows that the compositions of all segments as described by the mole fractions $X^{[m]}$ are all different for $\Delta U_m > 0$ and ordered according to

$$X^{[M]} < X^{[M-1]} < \dots < X^{[2]} < X^{[1]}.$$
(2.5)

Fig. S2 Graphical solution of eqn (2.4) with M = 4 for $T_t < T < T_c$ and positive affinity contrasts ΔU_m . The possible solutions can now be obtained from the intersections of the *M* relative chemical potentials $\Delta \mu^{[m]}$ (red curves) with a horizontal line (light blue) corresponding to constant $\Delta \mu = \Delta \mu_o$. For $\Delta \mu_o = \mu_{\alpha\beta}(T) + \Delta U^{[m]}$, segment $\mathscr{S}^{[m]}$ undergoes phase separation whereas the other M - 1segments attain different spectator phases.

As a consequence, when segment $\mathscr{S}^{[m]}$ undergoes phase separation, the other M-1 segments attain uniform spectator phases that differ in their compositions.

This journal is © The Royal Society of Chemistry [year]