Tailoring the Amphiphilicity and Self-assembly of Thermosensitive Polymers: Endcapped PEG-PNIPAAM Block Copolymers

Zhilong Quan^{1,2}, Kaizheng Zhu², Kenneth D. Knudsen³, Bo Nyström² and Reidar Lund^{2*}

¹ College of Materials Science & Engineering, Huaqian University, 361021 Xiamen,

P.R.China.

² Department of Chemistry, University of Oslo, P.O.Box 1033, Blindern, N-0315 Oslo, Norway.

³Department of Physics, Institute for Energy Technology, P. O. Box 40, N-2027 Kjeller,

Norway.

* To whom correspondence should be addressed: reidar.lund@kjemi.uio.no

Figure S1 Synthesis of C_{18} -Br and C_{18} -PEG-Br initiator

Figure S2¹H NMR spectrum of C₁₈-Br in CDCl₃

Figure S3 ¹³C NMR spectrum of C₁₈-Br in CDCl₃

Figure S4 ¹H NMR spectrum of C₁₈-PEG₁₀-Br in CDCl₃

Figure S5¹³C NMR spectrum of C₁₈-PEG₁₀-Br in CDCl₃

Figure S6¹H NMR spectra of C₁₈-PEG₂₀-Br and C₁₈-PEG₁₀₀-Br in CDCl₃

Figure S7 ¹H NMR spectra of C₁₈-PEG₂₀-PNIPAAM and C₁₈-PEG₁₀₀-PNIPAAM in CDCl₃

Figure S8 ¹H NMR spectra of C_{18} -PEG₁₀-PNIPAAM, C_{18} -PEG₂₀-PNIPAAM and C_{18} -PEG₁₀₀-PNIPAAM in D₂O (25°C)

NMR spectra were recorded using a Bruker AVANCE DPX 300 MHz spectrometer (300 MHz for ¹H and 75 MHz for ¹³C). CDCl₃ was used as the solvent and TMS was selected as the reference standard. The D₂O singlet at 4.70 ppm was selected as reference standard when the samples were measured in heavy water. Spectral features are tabulated in the following order: chemical shift (ppm); multiplicity (s – singlet, d – doublet, t – triplet, m – complex multiple).

Figure S1 Synthesis of C₁₈-Br and C₁₈-PEG-Br initiator

Synthesis of the octadecyl initiator (C_{18} -Br) and octadecyl-capped poly(ethylene glycol) initiator (C_{18} -PEG_n-Br, n= 10, 20 and 100)

The octadecyl-capped initiator (C_{18} -Br) and octadecyl-capped-PEG macroinitiators (C_{18} -PEG-Br) were prepared by reacting octadecanol (C_{18} -OH) or poly(ethylene glycol) octadecyl ether (C_{18} -PEG-OH) with 2-bromoisobutyl bromide in the presence of triethylamine. ^{1,2,3} The ¹H-NMR spectra indicated that the degree of esterification was at least 99 %.

Octadecyl 2-bromoisobutyrate (C₁₈-Br): ¹H NMR (300MHz, CDCl₃): $\delta = 0.88$ (t, 3H, CH₃-CH₂-), 1.26 (m, 30H, -(CH₂)₁₅-), 1.66 (m, 2H, CH₃(CH₂)₁₅CH₂CH₂O-), 1.95(s, 6H, -COC(CH₃)₂Br), 4.16 (t, 2H, CH₃(CH₂)₁₆CH₂O-);

¹³C NMR (75MHz, CDCl₃): δ = 172 (*C*=O), 66(-O*C*H₂(CH₂)₁₆CH₃), 56(-*C*(CH₃)₂ Br), 32 (-C(*C*H₃)₂Br), 23-31 (-OCH₂(*C*H₂)₁₆CH₃), 14(-O(CH₂)₁₇*C*H₃).

Figure S2 ¹H NMR spectrum of C₁₈-Br in CDCl₃

Figure S3 ¹³C NMR spectrum of C₁₈-Br in CDCl₃

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2013

Electronic supplementary materials

Figure S4 ¹H NMR spectrum of C₁₈-PEG₁₀-Br in CDCl₃

Figure S5¹³C NMR spectrum of C₁₈-PEG₁₀-Br in CDCl₃

Electronic Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2013

Electronic supplementary materials

Figure S6¹H NMR spectrum of C₁₈-PEG₂₀-Br and C₁₈-PEG₁₀₀-Br in CDCl₃

Poly(ethylene glycol) methyl ether 2-bromoisobutyrate (C₁₈-PEG₁₀-Br)

¹H NMR (300MHz, CDCl₃): $\delta = 0.72$ (t, 3H, CH₃-CH₂-), 1.12 (m, 30H, -(CH₂)₁₅-), 1.43 (m, 2H, CH₃(CH₂)₁₅CH₂CH₂O-), 1.8 (s, -COC(CH₃)₂ Br), 3.3 (m, 2H, CH₃(CH₂)₁₆CH₂O-), 3.50 (m, 36H, -O-(CH₂CH₂)₉-O-CH₂CH₂O-), 3.58 (m, 2H, -O-(CH₂CH₂)₉-O-CH₂CH₂O-), 4.16 (m, 2H, -O-(CH₂CH₂)₉-O-CH₂CH₂O-);

¹³C NMR (75MHz, CDCl₃): $\delta = 171$ (*C*=O), 71-66 (-O-(*C*H₂*C*H₂)_n-O), 65(-O*C*H₂(CH₂)₁₆CH₃), 56(-*C*(CH₃)₂ Br), 32(-C(*C*H₃)₂Br), 22-30(-OCH₂(*C*H₂)₁₆CH₃), 14 (-O(CH₂)₁₇*C*H₃).

Poly(ethylene glycol) methyl ether 2-bromoisobutyrate (C₁₈-PEG₂₀-Br):

¹H NMR (300MHz, CDCl₃): $\delta = 0.88$ (t, 3H, CH₃-CH₂-), 1.26 (m, 30H, -(CH₂)₁₅-), 1.57 (m, 2H, CH₃(CH₂)₁₅CH₂CH₂O-), 1.94(s, -COC(CH₃)₂ Br), 3.42 (m, 2H, CH₃(CH₂)₁₆CH₂O-), 3.57 (m, 76H, -O-(CH₂CH₂)₁₉-O-CH₂CH₂O-), 3.72 (m, 2H, -O-(CH₂CH₂)₁₉-O-CH₂CH₂O-), 4.34 (m, 2H, -O-(CH₂CH₂)₁₉-O-CH₂CH₂O-);

¹³C NMR (75MHz, CDCl₃): $\delta = 172$ (*C*=O), 72-69 (-O-(*C*H₂*C*H₂)_n-O), 65(-O*C*H₂(CH₂)₁₆CH₃), 56(-*C*(CH₃)₂Br), 32(-C(*C*H₃)₂Br), 23-31(-OCH₂(*C*H₂)₁₆CH₃), 14 (-O(CH₂)₁₇*C*H₃).

Poly(ethylene glycol) methyl ether 2-bromoisobutyrate (C₁₈-PEG₁₀₀-Br):

¹H NMR (300MHz, CDCl₃): $\delta = 0.88$ (t, 3H, CH₃-CH₂-), 1.27 (m, 30H, -(CH₂)₁₅-), 1.58 (m, 2H, CH₃(CH₂)₁₅CH₂CH₂O-), 1.95 (s, -COC(CH₃)₂ Br), 3.44 (m, 2H, CH₃(CH₂)₁₆CH₂O-), 3.58 (m, 396H, -O-(CH₂CH₂)₉₉-O-CH₂CH₂O-), 3.73 (m, 2H, -O-(CH₂CH₂)₉₉-O-CH₂CH₂O-, 4.34 (m, 2H, -O-(CH₂CH₂)₉₉-O-CH₂CH₂O-);

¹³C NMR (75MHz, CDCl₃): $\delta = 172$ (*C*=O), 71-66 (-O-(*C*H₂*C*H₂)_n-O), 65(-O*C*H₂(CH₂)₁₆CH₃), 56 (-*C*(CH₃)₂Br), 32(-C(*C*H₃)₂Br), 22-30(-OCH₂(*C*H₂)₁₆CH₃), 14 (-O(CH₂)₁₇*C*H₃).

The numbers of repeating units of the ethylene glycol (EG) in the PEG polymers were recalculated according to their proton NMR spectra of the fully esterification products, based on a simple formula: $n = (3I_a/2I_b)$, where I_a is the corresponding integral area of the methenyl group of EG (-O-C H_2CH_2 -) at 3.7 ppm and I_b is the integral area of the end-capped methyl group (-C(C H_3)₂Br, 6H) at 1.9 ppm. The number of repeating units of EG were estimated to be 10 for Brij®S10, 20 for Brij®S20 and 100 for Brij®S100, and they are designated C₁₈-PEG₁₀, C₁₈-PEG₂₀ and C₁₈-PEG₁₀₀, respectively.^{2,3}

Electronic Supplementary Material (ESI) for Soft Matter This journal is C The Royal Society of Chemistry 2013

Electronic supplementary materials

Figure S7 ¹H NMR spectrum of C_{18} -PEG₂₀-PNIPAAM and C_{18} -PEG₁₀₀-PNIPAAM in

CDCl₃

Figure S8 ¹H NMR spectra of C₁₈-PEG₁₀-PNIPAAM, C₁₈-PEG₂₀-PNIPAAM and C₁₈-

PEG₁₀₀-PNIPAAM in $D_2O(25^{\circ}C)$

References:

- 1 S. Liu and S. P. Armes, J. Am. Chem. Soc., 2001, 123, 9910.
- 2 N. Beheshti, K. Zhu, A.-L. Kjøniksen, K. D. Knudsen, and B. Nyström, *Soft Matter*, 2011, **7**, 8111.
- W. Wang, H. Mauroy, K. Zhu, K. D. Knudsen, A.-L. Kjøniksen, B. Nyström and S.
 A. Sande, *Soft Matter*, 2012, 8, 11514