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Figure 1.   Effect of changing crack depth on dynamic instability. These two rows show 
the effect of extending all cracks by nine subunit lengths for a single step. Each plot 
shows the probability of growth (red) or shortening (blue) as a function of tubulin 
concentration for a given reference structure (solid lines) or its altered version (dashed 
lines; structure is altered by healing or extended cracks as indicated). The four panels in 
each row correspond to the four reference structures from each of the three dynamic 
instability states (growth, shortening, or transition) as shown in Fig. 2 (paper);. These 
data show that in most cases, there is a strong effect on dynamic instability when crack 
depth is extended deeper, at least within the parameter ranges tested.
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Figure 2.   Plot of growth frequency as a function of free tubulin concentration for 12 
spontaneous MT structures in Fig. 2 (paper). Red dots are 4 growth MTs. Blue dots are  4 
shortening MTs. Black dots are 4 transition MTs. Some dots overlap. Based on this data, 
we see that MT structure in different states follow different curves. This is why we fit 
two different logistic regressions, one for growing MTs and one for shortening MTs.



Autocorrelation coefficients

We calculated the autocorrelation coefficients of the three variables used in our study, i.e. 
the number of GTP-bound subunits at the bottom of the cracks, the average crack depth, 
and the number of GTP-bound subunits per PF, with 3 seconds time lag. To calculate 
these autocorrelation coefficients, we ran a simulation with a tubulin concentration 10μM 
and calculated the number of GTP-bound subunits at the bottom of the cracks, the 
average crack depth, and the number of GTP-bound subunits per PF, for every 
spontaneously occurred structure at each time point in the simulation. We then obtained 
three time series for the three variables. We calculated the autocorrelation coefficient for 
each variable using the following formula

𝜌(𝜏) =

1
𝑁1

∑(𝑋[𝑡] ‒ �̅�)(𝑋[𝑡 + 𝜏] ‒ �̅�)

1
𝑁2
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where  is the autocorrelation coefficient between structures that are  seconds apart; 𝜌(𝜏) 𝜏
 is the value of variable X at time point t; X is one of the three variables, i.e. the 𝑋[𝑡]

number of GTP-bound subunits at the bottom of the cracks, the average crack depth, and 
the number of GTP-bound subunits per PF;  is the average of the variable X;  is the �̅� 𝑁1

number of terms ;  is the number of terms (𝑋[𝑡] ‒ �̅�)(𝑋[𝑡 + 𝜏] ‒ �̅�) 𝑁2

.  is larger than . We obtained the autocorrelation coefficients (𝑋[𝑡] ‒ �̅�)(𝑋[𝑡] ‒ �̅�) 𝑁2 𝑁1

of 0.42, 0.025, and 0.29 for the number of GTP-bound subunits at the bottom of the 
cracks, the average crack depth, and the number of GTP-bound subunits per PF, 
respectively. Because these autocorrelation coefficients are small, we conclude that the 
structures 3 seconds apart are weakly correlated in some respects (number of GTP-bound 
subunits) or not at all (average crack depth).



Significance test of the effect

To test statistical significance, we used the p-value calculated using method 2.3 in the 
main article. We choose 0.05 as cutoff. If the p-value of a variable (effect) is smaller than 
0.05, then this variable (effect) is significant [16]. We calculated that the p-values of 

, ,  and  in Table 1.𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃 𝑋[𝑇𝑢]

Table 1 p-values of , ,  and 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃 𝑋[𝑇𝑢]

Growth state
Eqn. (3a)

Shortening state
Eqn. (4a)

𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 0.02 0.0003
𝑋𝑑𝑒𝑝𝑡ℎ 0.02 0.0002
𝑋𝐺𝑇𝑃 <1e-16 0.0004
𝑋[𝑇𝑢] <1e-16 <1e-16

Multinomial logistic regression at fixed free tubulin concentration

To study the influence of average number of GTP-bound subunits at the bottom of crack 
, average crack depth  and average number of GTP-bound subunits per PF 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ

 on DI, we performed multinomial logistic regression at fixed tubulin concentration. 𝑋𝐺𝑇𝑃

When tubulin concentration is low ( < 8μM), the growth probabilities of MT structures 
chosen are ~ 0. On the other hand, when tubulin concentration is high ( > 11μM), MT 
almost grow persistently. Therefore, we performed multinomial logistic regression for 
tubulin concentration 8μM, 9μM, 10μM, 11μM. When we performed this multinomial 
logistic regression at each fixed tubulin concentration, we use all the 24 MT structures. 
For example, for multinomial logistic regression at tubulin concentration 8μM, we will 
use the growing/shortening/transition probabilities of all 8 growing MT structures, 8 
shortening MT structures and 8 transition MT structures as our responses. Also, we use 
the values of , the values of  and the values of  of all 8 growing MT 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

structures, 8 shortening MT structures and 8 transition MT structures as our predictors.

At tubulin concentration 8μM, the regression equation is

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = ‒ 2.35 + 1.45𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 0.76𝑋𝑑𝑒𝑝𝑡ℎ + 0.25𝑋𝐺𝑇𝑃

log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 0.35 ‒ 1.19𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 0.85𝑋𝑑𝑒𝑝𝑡ℎ ‒ 0.58𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛



(A1a)

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = ‒ 2.48 + 1.72𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 1.46𝑋𝑑𝑒𝑝𝑡ℎ + 0.06𝑋𝐺𝑇𝑃

log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 5.32 ‒ 1.48𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 3.68𝑋𝑑𝑒𝑝𝑡ℎ ‒ 0.14𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛

(A1b)

The p-value of  is 0.04. The p-value of  is 0.02. The p-value of  is 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

0.16.  and  are significant while  is not.𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

At tubulin concentration 9μM, the regression equation is

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = ‒ 1.43 + 1.20𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 0.76𝑋𝑑𝑒𝑝𝑡ℎ + 0.85𝑋𝐺𝑇𝑃

log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 0.05 ‒ 2.47𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 0.87𝑋𝑑𝑒𝑝𝑡ℎ + 0.51𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛

(A2a)

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = ‒ 2.47 + 1.79𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 0.73𝑋𝑑𝑒𝑝𝑡ℎ + 0.09𝑋𝐺𝑇𝑃

log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 6.01 ‒ 3.15𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 4.12𝑋𝑑𝑒𝑝𝑡ℎ ‒ 0.03𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛

(A2b)

The p-value of  is 0.0003. The p-value of  is 0.0003. The p-value of  𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

is 0.2.  and  are significant while  is not.𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

At tubulin concentration 10μM, the regression equation is

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 0.0053 + 0.17𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 1.67𝑋𝑑𝑒𝑝𝑡ℎ + 2.36𝑋𝐺𝑇𝑃



log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 0.78 ‒ 3.14𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 1.34𝑋𝑑𝑒𝑝𝑡ℎ + 1.27𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛

(A3a)

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 1.02 + 0.95𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 1.89𝑋𝑑𝑒𝑝𝑡ℎ + 0.41𝑋𝐺𝑇𝑃

log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 9.23 ‒ 4.27𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 6.22𝑋𝑑𝑒𝑝𝑡ℎ ‒ 0.04𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛

(A3b)

The p-value of  is <1e-8. The p-value of  is <1e-6. The p-value of  is 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

<1e-8.  and  and  are significant.𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

At tubulin concentration 11μM, the regression equation is

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 0.14 ‒ 0.80𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 1.42𝑋𝑑𝑒𝑝𝑡ℎ + 3.03𝑋𝐺𝑇𝑃

log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 2.39 ‒ 3.43𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 + 0.81𝑋𝑑𝑒𝑝𝑡ℎ + 1.57𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛

(A4a)

log ( 𝜋𝑔𝑟𝑜𝑤
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = ‒ 0.96 ‒ 2.89𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 + 0.42𝑋𝑑𝑒𝑝𝑡ℎ + 1.09𝑋𝐺𝑇𝑃

log ( 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛
𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) = 3.68 ‒ 7.75𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 + 0.21𝑋𝑑𝑒𝑝𝑡ℎ + 0.72𝑋𝐺𝑇𝑃

𝜋𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1 ‒ 𝜋𝑔𝑟𝑜𝑤 ‒ 𝜋𝑠ℎ𝑜𝑟𝑡𝑒𝑛

(A4b)

The p-value of  is 0.0002. The p-value of  is 0.04. The p-value of  is 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

0.0004.  and  and  are significant.𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃



From Eqn. (A1) - (A4), we see that the influence of average number of GTP-bound 
subunits at the bottom of crack  and average crack depth  are larger than 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ

average number of GTP-bound subunits per PF  on DI. The GTP-bound subunits 𝑋𝐺𝑇𝑃

seems to impact DI mostly through GTP-bound subunits at the bottom of crack. This is 
consistent with our simulation study.

Table 2 p-values of , ,  at fixed tubulin concentrations𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

8μM
Eqn. (A1a)

9μM
Eqn. (A2a)

10μM
Eqn. (A3a)

11μM
Eqn. (A4a)

𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 0.04 0.0003 <1e-8 0.0002
𝑋𝑑𝑒𝑝𝑡ℎ 0.02 0.0003 <1e-6 0.04
𝑋𝐺𝑇𝑃 0.16 0.2 <1e-8 0.004



Validation of statistical model

      To test the prediction power of our regression, we randomly chose 100 new 
configurations from a computational simulation at 10μM, and compared the predicted 
growth probability of these structures (as estimated by the regression) to their actual 
growth probability (as measured by using these structures as the start configuration for 
new simulations). More specifically, we calculated the average crack depth for each of 
these 100 structures and found that the range of this average was (0, 1.6). We divided the 
structures into four bins based on this average crack depth: (0, 0.4), (0.4, 0.8), (0.8, 1.2) 
and (1.2, 1.6). In addition, we calculated the average number of GTP-bound subunits at 
the base of the cracks and divided the structures into 4 bins based on this average, (0, 
0.5), (0.5, 1), (1, 1.5) and (1.5, 2). Based on these data, we then assigned each of the 100 
structures to one of the 16 resulting bins, and then randomly chose one structure from 
each bin. For each of these 16 structures, we then used the regression formula to calculate 
the predicted growth probability across a span of tubulin concentrations and compared 
these predictions to actual growth probability obtained from MT growth simulations 
started from these structures. Figure 3 is the comparison of growth probabilities from 
these two methods. These data show that our regression predicts the growth probability 
reasonably well.

      To further test our statistical regression model, we chose an additional 16 MT 
structures from an independent simulation conducted at 7.5μM tubulin concentration. We 
found that our statistical model continued to quantitatively describes the fundamental 
relationship between MT structure and growth/shortening probability (Figure 4). These 
observations indicate that our statistical model can with reasonable accuracy predict the 
growth/shortening probability of an arbitrary MT structure based only on the average 
number of GTP-bound subunits at the base of the cracks and the average crack depth 
between protofilaments.

      For the above new 16 structures obtained at 10μM tubulin concentration and the 
above new 16 structures obtained at 7.5μM tubulin concentration, we standardized their 
predictors before we plug their values in regression formula (Eqn. (3a) and Eqn. (4a) in 
the main article). We assume the distribution of new data is the same as the distribution 



of the data in main article which are used to build multinomial logistic regression. Thus, 
we used the mean and the standard deviation calculated from data in the main article as 
the mean and standard deviation of the new data and standardized the new data. For 
example, to standardize the average number of GTP-bound subunits at the bottom of the 
cracks  in the new data, we use  and  to calculate the 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 𝜇𝑐𝑘 ‒ 𝐺𝑇𝑃 𝜎𝑐𝑘 ‒ 𝐺𝑇𝑃

standardized  as .𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃

𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃 ‒ 𝜇𝑐𝑘 ‒ 𝐺𝑇𝑃
𝜎𝑐𝑘 ‒ 𝐺𝑇𝑃

Figure 3    Comparison of growth probabilities calculated from regression (red lines) and 
computational model (black dots) for 16 MT structures extracted from a simulation at 
tubulin concentration 10μM. The x-axis in each plot is tubulin concentration in μM. The 
y-axis in each plot is the growth probability. Each row corresponds to one bin of average 
crack depth. They are (0, 0.4), (0.4, 0.8), (0.8, 1.2) and (1.2, 1.6) from top to bottom. 
Each column corresponds to one bin of average number of GTP-bound subunits at the 
base of the cracks. They are (0, 0.5), (0.5, 1), (1, 1.5) and (1.5, 2) from left to right. The  



tubulin concentration in first column is larger because these four structures are in 
shortening state. Predictions of our regression match results of computational model very 
well.

Figure 4   Comparison of growth probabilities calculated from regression (red lines) and 
computational model (black dots) for 16 MT structures extracted from a simulation at 
tubulin concentration 7.5μM. The x-axis in each plot is tubulin concentration in μM. The 
y-axis in each plot is the growth probability. Each row corresponds to one bin of average 
crack depth. They are (0, 0.4), (0.4, 0.8), (0.8, 1.2) and (1.2, 1.6) from top to bottom. 
Each column corresponds to one bin of average number of GTP-bound subunits at the 
base of the cracks. They are (0, 0.5), (0.5, 1), (1, 1.5) and (1.5, 2) from left to right. The 
tubulin concentration in first column is larger because these four structures are in 
shortening state. Predictions of our regression match results of computational model very 
well.



Comparison of accuracy between regression models

We have two different types of multinomial logistic regression models. The first type is 
the one where we include tubulin concentration as a variable. This model includes Eqn. 
(3a,b) and Eqn. (4a,b) in the main article. The second type is the one where we fixed 
tubulin concentration. This model includes Eqn. (A1a,b), (A2a,b), (A3a,b) and (A4a,b). 
In this type of multinomial logistic regression, we focus on the influence of different 
factors: average number of GTP-bound subunits at the bottom of crack , average 𝑋𝑐𝑘 ‒ 𝐺𝑇𝑃

crack depth  and number of GTP-bound subunits per PF , on DI. For the first 𝑋𝑑𝑒𝑝𝑡ℎ 𝑋𝐺𝑇𝑃

type of model, we compares its predictions with simulation results (Figure 3 and 4). We 
will compare the predictions of second model as well.

To compare the predictions of fixed-tubulin-concentration model (second type) with 
simulation results, we calculate the difference between prediction of second type model 
and simulation results for tubulin concentrations used (8μM - 11μM) and sum up the 
square of difference. Small sum of squares indicates better predictions of the second type 
model. We perform this comparison for the 16 MT structures used in Figure 3 (chosen 
from a simulation ran at 10μM tubulin concentration) and also for the 16 MT structures 
used in Figure 4 (chosen from a simulation ran at 7.5μM tubulin concentration). The 
result is the red barplot in Figure 5. We observe that, for MT structures chosen from 
simulation 10μM (left panel in Figure 5), the prediction of growth/shortening probability 
of fixed-tubulin-concentration model (second model) is better when we make prediction 
of growth/shortening probability of a MT structure at a lower free tubulin concentration 
(8μM and 9μM). The same is observed for MT structures chosen from simulation at 
tubulin concentration 7.5μM (right panel in Figure 5).

We also calculate the sum of squared difference for the first model (where tubulin 
concentration is variable) at tubulin concentrations 8μM-11μM. The results are 
summarized as the blue barplot in Figure 5. We observe that, the fixed-tubulin-
concentration model (second model) is more accurate than the first model (except for 
predictions at 11μM for MT structures chosen from a simulation ran at tubulin 
concentration 10μM, rightmost two bars in left panel of Figure 5). Therefore, if we are 
interested in predicting growth/shortening probability for an arbitrary MT structure at 
free tubulin concentration ranging 8μM-11μM, we can use the fixed-tubulin-
concentration model (second model). Nevertheless, the first model is more general where 
tubulin concentration is a variable.



Figure 5.   Sum of squared difference between predictions of multinomial logistic 
regression and simulation results. X-axis is tubulin concentration at which predictions are 
made. Y-axis is the sum of squared difference between predictions of growth/shortening 
probability of multinomial logistic regression and growth/shortening probability 
calculated from simulation. Left panel: we use multinomial logistic regression model to 
calculate growth/shortening probability of 16 MT structures randomly chosen from a 
simulation ran at 10μM tubulin concentration and take the difference between this 
probability and probability calculated from simulations at tubulin concentration 8μM-
11μM. Then we sum up the squared difference. Red bars use fixed-tubulin-concentration 
multinomial logistic regression for prediction (second model). Blue bars use multinomial 
logistic regression where tubulin concentration is variable (first model). Right panel: 
same calculations as left panel with 16 MT structures randomly chosen from a simulation 
ran at 7.5μM tubulin concentration.


