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The magnitude of the cell contractility in absence of the external strain

In absence of external strain, the effective free energy is 
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cells moduli are observed as a linear function of substrate elasticity,  is considered c

E
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as a constant. Under this assumption, the cell contractility increases gradually at first, 
and then followed by a plateau.
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The contractility and alignment of the cell under static uniaxial strain  

Under static uniaxial strain, the effective free energy can be written as
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Cells can adjust both the magnitude, , and the orientation, , of the contractility, to c 

minimize the free energy . W
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We denote the stationary point by solving the equation  as0cW   
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Further derivation shows that , indicating  reaches 
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its minimum when . Since the young’s modulus  is smaller than  c static  E 

(~361kPa, see Results) in general, thus ,  will decrease while increases, 1E  static 

being self-consistent with the phenomenon of “tensional homeostasis” .
Then we get
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For convenience, we set that

, , .\* MERGEFORMAT 

2

2 0



W A
c

>
2


 
W B
c 

2

2





W C


(A6)
The steady-state solutions can be given by solving the coupled equations
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Among those solutions, a local minimum meets the equations
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By substituting  and in Eq. A6, we obtain thatstatic static
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This implies that parallel alignment may be the stable orientation if  and .1E  1  
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indicates that perpendicular alignment is not a stable orientation.
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This implies that most cells may align in the direction of 
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Notably,  and are very close to 1, which makes  E    
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is very close to zero.

S3

Cells alignment is guided by the magnitude and direction of cyclic uniaxial strain
Under cyclic uniaxial strain, the effective free energy averaged in one period is

\* 
 22 2 2 2 2

0 0 0
1 1 1( cos 1) ( ) 2 cos + cos

2
 

      
 

c
c c

c

W
E E E
       

MERGEFORMAT (A8)

The stationary point is given by solving  as0cW   
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We then get

\* 

2

2

2
2 2

2

1sin 2 2 1 2 3 cos ,

14 cos sin 1 ,

32 cos 2 2 1 3 cos sin 2 .
2

 



  

           
       

                  

c

c

c
c

W
E

W
E

W
E

    


  
 

      


MERGEFORMAT (A9)
Similar as described above, three stationary points can be derived from Eq. A7:
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In conclusion, parallel orientation or  will 
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Drugs-tuned contractility impacts on cell alignment under cyclic uniaxial strain
The effective free energy averaged in one period is 
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Three stationary points can be solved from the Eq. A10:
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parallel alignment will locally minimize the effective free energy when the substrate 
is stiffer than the cells and the magnitude of the external cyclic strain is small.
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This explains why cells orientation varies when exposed to contractility-regulating 
reagents of different concentration.


