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CNC volume fraction calculations:

    Density of CNC is (Sun et al. 2012).1.5g·cm-3

1% (Wt) CNC volume fraction= 1%
Density of CNC

 0.01g·g-1H2O
1.5g·cm-3  

 6.6103cm3·g-1H2O  6.6103 ml·ml -1H2O

In the current study, 1 mL 1.0% (wt) CNC suspension was added to 1 mL of the bacterial 

suspension, thus CNC weight concentration was 0.5%.
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Microscopy glass slides/Glass cover slips cleaning protocol:

    Prior to each experiment, the slide pieces (1cm × 1cm) were thoroughly rinsed with deionized 

(DI) water to remove visible impurities (large particles). Subsequently, the slides were immersed 

in 1N HCl and sonicated for 10 minutes to remove grease. After sonication, the slides were 

rinsed with sterilized ultrapure water, 70% ethanol, and sterilized ultrapure water successively. 

Finally, the drying process was achieved in a biosafety cabinet (CLASS II Type A2, Microzone 

Cor., Canada). The clean slides were reserved as bare slides used in the bacterial aggregation and 

adhesion experiments (Hwang et al. 2012).

Zeta potential measurements of glass slides:

    To determine the surface charge of bare glass slide surfaces, silicon dioxide particles (approx. 

99%; particle size 0.5-10 m with 80 % being between 1-5 m. Sigma - Aldrich) were used. 

Zeta potential of silicon dioxide particles was measured in 10 mM NaCl solution with no pH 

adjustment (pH = 6.0-6.2) using a Malvern Zetasizer Nano-ZS (Model: ZEN3600, Malvern 

Instruments Ltd, Worcestershire, UK) at 25 °C. Zeta potential is reported to be -36.3 ± 0.15 mV 

in this study.

Depletion potential calculations:

    The depletion potential W for the same colloidal spheres with the radius R in the presence of 

rod-like particles is given as: 

(3)                                                               )1(
3
2)( 3
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LkhW rB  

    where kB is the Boltzmann constant, T is the absolute temperature, L is the length, D is the 

diameter,  is the volume fraction of rod-like particles (CNC particles here), R is the diameter r

and h is the surface-to-surface distance of bigger spherical colloidal particles (bacterial cells 
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here). One can estimate the needed depletant concentration if the attraction energy of -3 kBT is 

assumed sufficient to induce the phase separation of large particles (Lekkerkerker and Tuinier 

2011).

    Parameters used in the current study:

L = 100 nm 

D = 10 nm

R = 440 and 410 nm (Equivalent Radii) for P. flu CHA0 and P. flu CHA19-WS cells 

respectively

= 3.3×10-3 ml·ml-1
r

    According to equation 3, the depletion potential W(h) was about -1 kBT, which is less than -3 

kBT. Therefore, the depletion aggregation was unfavorable in the current study.

Dissipation change in QCM-D experiments:

    ΔD is defined by the flowing equation:

∆𝐷 =
𝐸 𝑙𝑜𝑠𝑡

2𝜋𝐸𝑠𝑡𝑜𝑟𝑒𝑑
                                                        (4)

where  is the energy lost during one oscillation cycle,  is the total energy stored in 𝐸 𝑙𝑜𝑠𝑡  𝐸𝑠𝑡𝑜𝑟𝑒𝑑

the oscillator. ΔD represents the sum of all processes that induce energy losses in the oscillating 
system (Rodahl et al. 1995).
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Figure. S1 Fluorescent microscopy images of bacterial aggregation. P. flu CHA0 without (A) and 

with CNC (B); P. flu CHA19-WS without (C) and with CNC (D).
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Figure. S2 Representative zeta potential distribution (in 10 mM NaCl solution with no pH 

adjustment). (A) CNC; (B) P. flu CHA0; (C) P. flu CHA19-WS; (D) P. flu CHA0 and CNC 

mixture; (E) P. flu CHA19-WS and CNC mixture.
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Figure. S3 Theoretical DLVO interaction energies between bacteria and the silica surface with 

and without CNC, and DLVO interaction energies between CNC particles and the silica surface. 
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Figure. S4 QCM-D study on bacterial adsorption onto CNC coated silica surfaces. (A) P. flu 

CHA0; (B) P. flu CHA19-WS
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Table S1 Input parameters in the DLVO calculations

Symbol Value used

a1, equivalent radius of P. flu CHA0 cells (m) 4.4×10-7

a2, equivalent radius of P. flu CHA19-WS cells (m) 4.1×10-7

a3, equivalent radius of CNC particles (m) 2.04×10-8

1, zeta potential of P. flu CHA0 (mv) -18.78

2, zeta potential of P. flu CHA19-WS (mv) -16.22

3, zeta potential of CNC (mv) -42.30

4, zeta potential of glass surface/silica crystal surface (mv) -36.30

A123, bacterium-water-silica Hamaker constant (J) 6.16×10-21(Rijnaarts et al. 1995a and b)

A123, CNC-water-silica Hamaker constant (J) 4.4×10-20

relative permittivity 80.1

vacuum permittivity 8.854×10-12

 -1, Debye length (m) 3.3×108
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Note: 1. In NaCl solution, the electric double layer Debye length  -1 is given by , where [NaCl] in the unit of M(Lu et 
𝜅 ‒ 1 =

0.304
[𝑁𝑎𝐶𝑙]

 𝑛𝑚

al. 2011). 

2. The Hamaker constant for CNC-water-silica is calculated based on the equation , where is 𝐴132 = ( 𝐴11 ‒ 𝐴33)( 𝐴22 ‒ 𝐴33) 𝐴11 

Hamaker’s constant for cellulose particles,  is Hamaker’s constant for silica, and .is Hamaker’s constant for water. Hamaker’s 𝐴22 𝐴33

constants for cellulose, silica, and water used in this study were 1.1×10-20 J (Boluk et al. 2012), 2.0×10-20 J (Lomboy et al. 2011), and 

3.7×10-20 J (Lerner et al. 2012), respectively.
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