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1 Particle position

In this section we calculate the centre of mass of a particle-
spherical interface system, which then determines the force
acting on the particle and hence the position of the particle on
the spherical interface.

We consider a spherical drop with a particle attached to its
interface as depicted in Fig. 1. We begin by considering a
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Fig. 1 A spherical particle p attached to the interface of a spherical
drop of fluid 2, surrounded by outer phase 1.

particle which is sitting at the zenith of the drop. Taking the
axes origin to be the centre of the drop, we denote the centre
of mass of the system d, measured in the positive z direction.
By symmetry about the z-axis, the centre of mass will be c =
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(0,0,d), where

c =
∫∫∫

xxxρ(xxx) dV
/∫∫∫

ρ(xxx) dV

=

∫∫∫
particle xxx∆ρ1p dV +

∫∫∫
fluid 2 xxx∆ρ12 dV

∆ρ1p
∫∫∫

particle dV +∆ρ12
∫∫∫

fluid 2 dV
(1)

where ∆ρi j ≡ ρ j − ρi is the difference between the two den-
sities for phase i and j. The quantity d can be written as the
weighted average of the centre of mass for both the drop d2
and the particle dp

d =
∆ρ1pVpdp +∆ρ12V2d2

∆ρ1pVp +∆ρ12V2
(2)

where V2 and Vp are the volumes of the drop and the particle,
respectively. In the preceding expression the quantity V2 is the
volume of the supporting drop 2. To simplify the expression
for d2 we add and subtract a volume of fluid corresponding to
the fluid removed by the presence of the particle (denoted by
the e ≡ e1 + e2), which is depicted in Fig. 2. This allows d to
be written

d =
∆ρ1pVpdp +∆ρ12(V2+ed2+e −Vede)

∆ρ1pVp +∆ρ12V2
. (3)
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Fig. 2 A cartoon depicting the initial particle drop system split into
a series of different domains to facilitate the calculation of the centre
of mass of the system. Inset: A spherical cap with volume vcap and
centre of mass dcap formed by taking a portion of a sphere of radius
r, with subtended angle ϕ .
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The centre of mass of the newly formed body 2+e is simply
the centre of mass of a sphere centred at the origin, which is
zero.

All the quantities in the preceding expression for the cen-
tre of mass can be expressed in terms of the volume vcap and
centre of mass dcap of a spherical cap, which can be written

vcap(r,ϕ) =
πr3

3
(2−3cosϕ + cos3

ϕ) (4a)

dcap(r,ϕ) =
3r
4
(1+ cosϕ)2

2+ cosϕ
(4b)

where r is the radius of the sphere and ϕ is the subtended
angle, as illustrated in Fig. 2.

By applying the law of cosines to the angle formed between
the centre of the particle, the centre of the supporting spheri-
cal interface, and the three phase contact allows the distance
between the two particles l, and the filling angle α to be ex-
pressed in terms of the drop radius

l2 = a2 +R2 −2aRcosθp (5a)

R2 = a2 + l2 −2al cosα. (5b)

Finally, the centre of mass of the system can be expressed
as

d =
∆ρ1pVpdp −∆ρ12(Ve1de1 +Ve2de2)

∆ρ1pVp +∆ρ12V2
(6)

where the expressions for volume and centre of mass of each
of the regions is given by

Vp =
4π

3
a3 = vcap(a,π) dp = l (7a)

Ve1 = vcap(R,ω) de1 = dcap(R,ω) (7b)
Ve2 = vcap(a,α) de2 = dp −dcap(a,α) (7c)

V2 =
4π

3
R3 − (Ve1 +Ve2) d2 = 0, (7d)

together with the introduction of the angle ω = π − (α +θp).
Substituting these expressions into eqn (6), and noting that

dcap(r,ϕ)vcap(r,ϕ) =
π

4
r4 sin4

ϕ (8)

then gives

d = l
∆ρ1pvcap(a,π)−∆ρ12vcap(a,α)

∆ρ1pVp +∆ρ12V2
(9)

where we have used the equality of Rsinω = asinα by apply-
ing the Law of Sines to the triangle formed in Fig. 1.

This configuration can be rationalised as a particle rotating
with its centre distance l from the centre of the spherical drop.
The centre of mass of this system acts at some distance d from

the centre of the drop, with gravity acting on a volume of ef-
fective mass meff = ∆ρ1pVp +∆ρ12V2, with a force meff g. This
means that the gravitational force acting on particle will be
either upwards or downwards, depending on the sign of the
expression S(α), which is

S(α) = ∆ρ12v̄cap(α)−∆ρ1pv̄cap(π), (10)

where v̄cap(ϕ) is the scaled cap volume v̄cap(ϕ) ≡
vcap(r,ϕ)/r3, and we have used the property that l > 0.

This result can be applied to the particle-drop-substrate con-
figuration as follows. If a sessile drop is formed on the sub-
strate, positive S will result in a gravitational force acting up-
wards on the particle, ultimately positioning the particle ax-
isymmetrically at the drop apex. Conversely, for negative S
the particle will experience a force downward, positioning it
at the substrate. The opposite result holds for a pendant drop.

Interestingly, the above expression is dependant on the fill-
ing angle α , which in turns depends on the drop radius and
hence the drop volume. It is therefore possible for a particle
initially at the apex of the supporting drop to reposition itself
at the substrate partway through the evaporation of the sup-
porting drop.

2 Supplementary videos

We include four movies of the evaporation of a water capillary
bridge formed between a particle and a substrate:

1. Movie 1 – a silica particle below a PTFE substrate

2. Movie 2 – a silica particle below a gold substrate

3. Movie 3 – a polystyrene particle above a polystyrene sub-
strate

4. Movie 4 – a silica particle above a PMMA substrate.
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