Supplementary Information for

Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries

Xianfeng Zheng,^{*a*} Guofang Shen,^{*a*} Yu Li,* ^{*a*} Hanning Duan,^{*a*} Xiaoyu Yang,^{*a*} Shaozhuan Huang,^{*a*} Hongen Wang,^{*a*} Chao Wang,^{*a*} Zhao Deng^{*a*} and Bao-Lian Su*^{*a,b,c*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

^b Laboratory of Inorganic Materials Chemistry, University of Namur (FUNDP), 61 rue de Bruxelles, B5000, Namur, Belgium

^c Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom

* E-mail: bao-lian.su@fundp.ac.be & bls26@cam.ac.uk

Figure. S1 TEM images of commercial CoO powder showing the agglomeration of numerous nanoparticles with particle

C-H stretching 320 etching C=C stretcl Olevlamine 100 80 60 40 20 CoO after synthesis CoO after washed 0 3200 2800 2400 2000 1600 1200 Wavelength (cm⁻¹)

diameter around 40-60 nm.

Figure. S2 FTIR spectra of the oleylamine (96%, Aldrich), the as-synthesized CoO nanoparticles and CoO nanoparticles after a washing process with ethanol.

Fransmittance (%)

Figure. S3 HRTEM images of three nanoparticles from sample 2 with the arrows showing the long and winding nanochannels.

Figure. S4 HRTEM images of three nanoparticles from sample 3 with the arrows showing the short and straight nanochannels.

Figure. S5 Time-dependent UV-vis absorption spectra for Rh B photodegradation with microporous CoO samples 1-3 and commercial powder.