Supporting Information

High Efficient Overlayer Derived from Peroxotitanium for

Dye-sensitized Solar Cells

Shuang Yang¹, Yu Hou¹, Bo Zhang¹, Xiao Hua Yang¹, Wenqi Fang¹, Hui Jun Zhao² and Hua Gui Yang^{*1}

¹ Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China

² Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia

Figure S1. FT-Raman spectrum of dried peroxotitanium solution.

Figure S2. TG of the dried peroxotitanium gel (60 °C). Heating rate is 10 °C/min.

Figure S3. FT-Raman spectrum of TiCl₄ and PTS coated TiO₂ films.

Figure S4. UV-vis absorption spectrum of N719 dye absorption on TiO₂ photoanode.

Figure S5. SEM images of bare FTO substrate.

Figure S6. X-ray diffraction pattern of TiCl₄ and PTS coated anatase films. The anatase was about 20nm in diameter reported previously.^[1]

Figure S7. Diffuse reflectance spectra of the TiO₂ films without overlayer (green), TiCl₄ overlayer (red) and PTS overlayer (blue).

Figure S8. Niquist plots of DSSCs fabricated with different blocking layers and overlayers on the whole TiO₂ films.

Reference

[1] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, *Thin Solid Films* **2008**, *516*, 4613-4619.