Supporting information

Synthesis of α-Fe₂O₃ Nanoparticles from Fe(OH)₃ Sol and Their Composite with Reduced Graphene Oxide for Lithium Ion Batteries

Meng Du, Chaohe Xu, Jing Sun* and Lian Gao

The State Key Lab of High Performance Ceramics and Superfine

Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences,

1295 Ding Xi Road, Shanghai 200050, China

E-mail address: jingsun@mail.sic.ac.cn (J. Sun)

^{*} Corresponding authors. Tel: +86 21 52414301. Fax: +86 21 52413122.

Figure S1. TG analyses of three α -Fe₂O₃/RGO composites with different mass ratios between α -Fe₂O₃ and RGO measured from 25 to 700 °C at a heating rate of 10 °C min⁻¹ in air.

Figure S2. TEM images of $81\%\alpha$ -Fe₂O₃/RGO (a), (b) and

 $33\%\alpha$ -Fe₂O₃/RGO (c), (d).

Figure S3. TEM images of $73\%\alpha$ -Fe₂O₃/RGO after 70 times cycling at a

current density of 100 mA g^{-1} .