Self-assembly of one-pot synthesized $Ce_xZr_{1-x}O_2$ -BaO· nAl_2O_3 nanocomposites promoted by site-selective doping of alumina with barium

Juan Carlos Hernández-Garrido^a, Stefano Desinan^b, Roberta Di Monte^c, Emiliano Fonda^d, Paul A. Midgley^e, José Juan Calvino^a and Jan Kašpar^c

SUPPLEMENTARY INFORMATION

Table S1. Textural properties and phase composition of the nanocomposites after calcination at various temperatures.

Sample	Calcination	BET Surface	Surface Al ₂ O ₃ Phases			BHA	Particle size
Sample	Temperature	Area					$Ce_{o.2}Zr_{o.8}O_{\scriptscriptstyle 2}$
			γ	θ	α		-
	[K]	$[m^2g^{-1}]$	weig	ght %			[nm]
CZ20(30)-BDA	973	264	100				
	1373	99	67	33			11
	1473	19		48	5	47	23
CZ20(13)-BDA	973	280	100				
	1373	118	85	15			10
	1473	72	38	37	8	17	15
CZ20(35)-Al ₂ O ₃ [a]	773	198	100				
	1373	43		100			16
$CZ_{20}(13)-Al_2O_3[a]$	773	213	100				
	1373	68		100			14

[a] Conventional CeO2-ZrO2-Al2O3 nanocomposite from a previous study.[1]

Figure S1. XRD patterns of CZ20(30)-BDA, calcined at (a) 973, (b) 1273, (c) 1373 and (d) 1473 K. \bigcirc , BHA; \blacksquare , γ -Al₂O₃. Dashed lines represent the reflections due to tetragonal Ce_{0.2}Zr_{0.8}O₂.

Figure S2. Rietveld structural refinement of the $Ce_{0.2}Zr_{0.8}O_2(5owt\%)$ -BaO \cdot 5.25Al₂O₃ calcined at 1473 K. The powder patterns were collected in step scanning mode. The step size used was 0.02 ° 2 θ and the counting time was 10 sec/step. The patterns were measured in the range 5-125° 2 θ . The refinement was performed with Rietveld method. The general structure analysis system (RIETAN) was used.

sample	$Ce_{0.2}Zr_{0.8}O_2(50wt\%)$ -BaO BaO·5.25 Al ₂ O ₃
Rwp	10
Phase composition	$Ce_{0.2}Zr_{0.8}O_2$ (TZ) + Ba- $\beta_1\beta_{11}$ -Al ₂ O ₃
Nominal TZ(%wt)	50
Calculated TZ (%wt)	49
$Ce_{o.2}Zr_{o.8}O_2$	
Space Group	P₄₂/nmc
Cell Parameter	a = b = 3.6492(1) Å [a]
	c = 5.2534(2) Å
$Ba\text{-}\beta_I\beta_{II}\text{-}Al_2O_3$	
Space Group	P6 ₃ /mmc
Cell Parameters	a = b = 5.5889(6) Å
	c = 22.744(2) Å
Nominal composition	$Ba_{0.96}Al_{10.83}O_{17.21}$
Calculated composition	$Ba_{0.79}Al_{10.97}O_{17.23}$
Crystallite shape factor	1.0
Calculated ratio β_I/β_{II}	9.8 [b]

Table S2. Results of Rietveld Structural Refinement of XRD patterns of $Ce_{0.2}Zr_{0.8}O_2(50wt\%)$ -BaO·5.25 Al₂O₃ calcined at 1473 K.

[a] Based on the Vegard law, the composition of the solid solution corresponds to ${\rm Ce_{o.2}Zr_{o.8}O_2}$

[b] nominal value = 1.0

Table S3. XANES characterisation of the Ce_{0.3}ZF_{0.5}O₂CZ₂₀(yy)-Al₂O₃ and Ce_{0.3}ZF_{0.5}O₂CZ₂₀(yy)-BaO-11.5Al₂O₃BDA nanocomposites: effect of thermal and redox ageing on the fraction of reduced cerium. Results are obtained by linear combination of standard compounds spectra: Ce(III)(CeAlO₃) and Ce(IV)(Ce_{0.2}Zr_{0.5}O₂).

Sample	Calcination Temperature	Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)			
	[K]	mole fraction			
		Redox Ageing Treatment			
		Not Aged	HTR-LTO	HTR-LTO-HTO	
CZ20(30)-BDA	973	0.00			
	1373	0.01			
CZ20(13)-BDA	973	0.00	0.68	0.35	
	1373	0.03	0.29	0.14	
$CZ_{20}(13)/Al_2O_3 - IW$	773	0.00	0.52		
	1373	0.29	0.48		

Formatted Table

Formatted Table

Figure S3. Interaction between the BHA phase and the mixed oxide phase: Consistently the (ooo1) reflections of the BHA are perfectly aligned with the (-11-2) reflections of the tetragonal Ce-Zr phase. (Left) HREM image for the sample after calcination at 1473 K. (Centre) Digital Diffraction Patterns from both the Barium Hexaaluminate (BHA) area and the tetragonal Ce-Zr nanocrystal. (Right) DDP obtained from the imaged area (BHA+CZ nanocrystal) in which the (ooo1) reflections -triangles - of the BHA are perfectly aligned with the (-11-2) reflections – circles - of the tetragonal Ce-Zr phase.

[1] R. Di Monte, P. Fornasiero, S. Desinan, J. Kaspar, J. M. Gatica, J. J. Calvino, E. Fonda, Chem Mater 2004, 16, 4273.