Supplementary Information

Generalized and high temperature synthesis of a series of crystalline mesoporous metal oxides based nanocomposites with enhanced catalytic activities for benzene combustion

Fujian Liu^{*a, b*}, Shufeng Zuo^{*a*}, Xiaodan Xia^{*a*}, Jing Sun^{*c*}, Yongcun Zou^{*c*} Liang Wang^{*c*}, Chunguang Li^{*c*} and Chenze Qi*^{*a*}

^a Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, PR China, Email address: <u>qichenze@usx.edu.cn</u>

^b Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, PR China.

^c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and College of Chemistry, Jilin University, Changchun 130012, PR China.

Supporting figure captions

Figure S1 Wide angle XRD patterns of crystalline mesoporous (a) Cr_2O_3 , (b) $Ce_{0.5}Zr_{0.5}O_2$, (c) SnO_2 (d) ZrO_2 , (e) CeO_2 , (f) TiO_2 , and (g) Al_2O_3 .

Figure S2 N₂ isotherms of crystalline mesoporous (a) ZrO_2 , (b) TiO_2 , (c) $Ce_{0.5}Zr_{0.5}O_2$, (d) Fe_2O_3 , (e) Cr_2O_3 and (f) SnO_2 . The The isotherm for (a)-(e) are offset by 400, 300, 200, 100 and 50 m²/g, respectively along the vertical axis for clarity.

Figure S3 TEM images of (A-C) 10% MnO_x/P4VP-CeO₂ and (D-F) 0.2% Pt/10% MnO_x/P4VP-CeO₂.

Figure S4 Small angle XRD patterns of (a) P4VP-CeO₂, (b) 10%MnO_x/P4VP-CeO₂, and (c) 0.2%Pt/10%MnO_x/P4VP-CeO₂.

Figure S5 Pt_{4f} XPS spectrum of 0.2% PtO_x/10% MnO_x/P4VP-CeO₂.

Figure S1

Figure S2

Figure S4

Figure S5