

Fig.S1 The relationship between temperature and conductivity of the oxidized $Nb_{1.33}Ti_{0.67}O_4$ (Nb₂TiO₇) sample.

Fig.S2 The relationship between temperature and conductivity of oxide $NbTi_{0.5}Ni_{0.5}O_4$ sample.

Fig.S3 The relationship between temperature and conductivity of the NbTi_{0.5}Cu_{0.5}O₄ sample which was exposed to 5% H₂/Ar when the temperature reaches 730° C.

Fig.S4 AC impendence of the symmetric solid oxide cells NTO-SDC/YSZ/ NTO-SDC tested at 800 $^{\circ}$ C in pure H₂ under different current densities, where the NTO is Nb_{1.33}Ti_{0.67}O₄.

Fig.S5 AC impendence of the symmetric solid oxide cells NTO-SDC/YSZ/ NTO-SDC tested at 800 $^{\circ}$ C at OCV under different hydrogen partial pressure, where the NTO is Nb_{1.33}Ti_{0.67}O₄.

Fig.S6 I-V curve of the solid oxide electrolyzer based on Ni-SDC fuel electrode for steam electrolysis $(4\% H_2/Ar/3\% H_2O)$ at 800 °C.

Fig.S7 AC impendence of the solid oxide electrolyzer based on Ni-SDC composite fuel electrodes for steam electrolysis with 4%H₂/Ar/3%H₂O fed to fuel electrode and oxygen electrode in static air at 800 °C.

Fig.S8 (a) Short-term performance of the solid oxide electrolyzers based on Ni-SDC fuel electrodes for steam electrolysis $(4\% H_2/Ar/3\% H_2O)$; (b) H₂ production and current efficiency based on Ni-SDC composite fuel electrodes.

