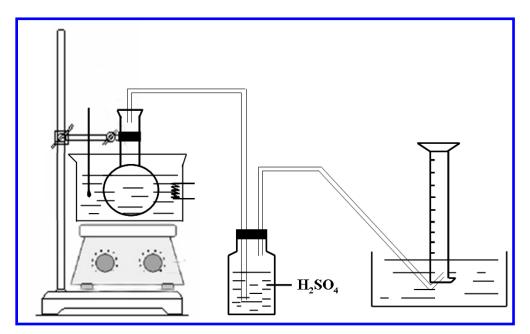
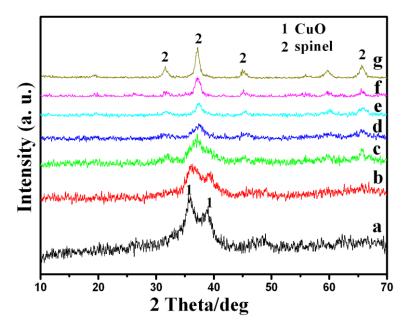
Supporting Information for

Binary Cu-Co Catalysts Derived from Hydrotalcites with Excellent Activity and Recyclability towards NH₃BH₃ Dehydrogenation

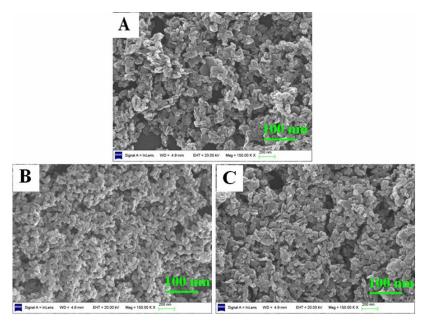
Changming Li, Junyao Zhou, Wa Gao, Jinwen Zhao, Jie Liu, Yufei Zhao, Min Wei,* David

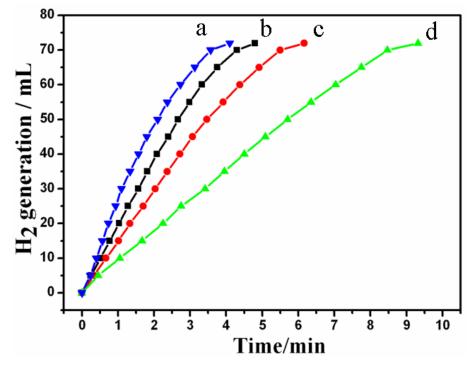

G. Evans and Xue Duan

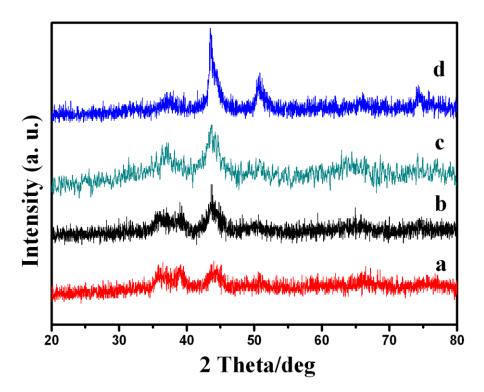
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

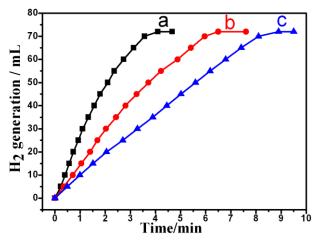

Technology, Beijing 100029, P. R. China

^{*} Corresponding author. Tel: +86-10-64412131; Fax: +86-10-64425385.


E-mail address: weimin@mail.buct.edu.cn.


Figure S1. The experimental setup for hydrogen generation from the NH₃BH₃ dehydrogenation.


Figure S2. XRD patterns of the (Cu_xCo_y)₂Al-MMO samples with various ratios of *x*(Cu) : *y*(Co): a) 1:0, b) 0.87:0.13, c) 0.75:0.25, d) 0.50:0.50, e) 0.25:0.75, f) 0.13:0.87, g) 0:1.


Figure S3. SEM images of the MMO samples: A) Cu₂Al-MMO, B) (Cu_{0.50}Co_{0.50})₂Al-MMO, C) Co₂Al-MMO.

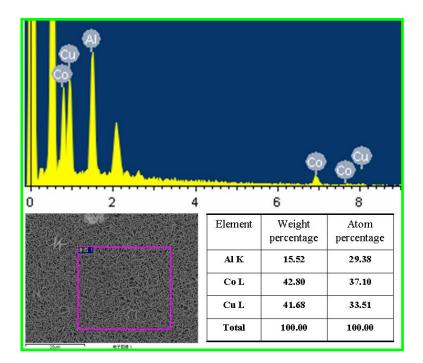

Figure S4. Plot of H₂ volume generated from AB hydrolysis *vs.* time catalyzed by (a) $(Cu_{0.50}Co_{0.50})_2AI-300$, (b) $(Cu_{0.50}Co_{0.50})_2AI-400$, (c) $(Cu_{0.50}Co_{0.50})_2AI-500$, and (d) $(Cu_{0.50}Co_{0.50})_2AI-600$ (*w*_{cat.}= 20 mg, [AB] = 50 mM, (Cu+Co)/AB=0.09, *T* = 25±1 °C).

Figure S5. XRD patterns of the $(Cu_{0.50}Co_{0.50})_2$ Al-Cat samples obtained by reduction in H₂ at different temperatures: (a) 300 °C, (b) 400 °C, (c) 500 °C, (d) 600 °C.

Figure S6. The recyclability for the $(Cu_{0.50}Co_{0.50})_2$ Al-Cat powdered catalyst towards NH₃BH₃ dehydrogenation in three consecutive cycles from curve a to c.

Figure S7. SEM-EDS analysis for the CuCoAl-LDHs film precursor on Al substrate prepared by the *in situ* growth method.