Supporting Information

Hollow microflower arrays of PEDOT and their application for the counter electrode of a dye-sensitized solar cell

Chung-Wei Kung^a, Yu-Heng Cheng^a, Hsin-Wei Chen^a, R. Vittal^a and Kuo-Chuan Ho^{a,b}*

^a Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

^b Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617,

Taiwan

Fig. S1. EDX spectra of the films of (a) PEDOT/ZnO-MFAs, and (b) PEDOT-HMFAs.

Fig. S2. EDX elemental mapping images of the film of PEDOT/ZnO-MFAs for the elements of C and S.

Fig. S3. EDX elemental mapping images of the film of PEDOT-HMFAs for the elements of C and S.

Fig. S4. SEM images of the films of PEDOT/ZnO-MFAs, obtained by using the charge densities of (a) 400 mC cm⁻², (b) 400 mC cm⁻² at higher resolution, (c) 800 mC cm⁻², (d) 800 mC cm⁻² at higher resolution, (e) 1000 mC cm⁻², and (f) 1000 mC cm⁻² at higher resolution.

Fig. S5. CV curves of (a) sputtered Pt-CE, (b) CE with flat PEDOT, and (c) CE with PEDOT-HMFAs, all obtained for 200 cycles. The CVs were obtained in an electrolyte containing 10.0 mM LiI, 1.0 mM I₂, and 0.1 M LiClO₄ in ACN, at the scan rate of 50 mV s^{-1} .