Superhydrophilic mesoporous sulfonated

melamine-formaldehyde resins supported palladium nanoparticles as an efficient catalyst for biofuel upgrade

Zhongfei Lv,^a Qi Sun,^a Xiangju Meng^{*a} and Feng-Shou Xiao ^{*a,b}

Supplementary Tables.

Table S1 Textural pa	ameters of various samples.
----------------------	-----------------------------

Sample	BET	BJH	Pore	Micropore
	(m^2/g)	pore size	volume	BET
		(nm)	(m^3/g)	area (m ² /g)
MSMF	256	10.2	0.50	20
Pd/MSMF	197	11.2	0.42	26
Pd/MMF	188		0.74	16
Pd/TiO ₂	5.6			
Pd/Al_2O_3	158	3.8	0.52	24
Pd/C	1062		0.72	185

Element	С	Н	Ν	S	
Molar ratio	1.00	2.13	1.16	0.12	
Table S3 Molar ratio of C/N/O/S of MSMF by XPS analysis.					
Element	С	Ν	0	S	
Molar ratio	1.00	1.34	0.47	0.095	

Table S2 Molar ratio of C/H/N/S of MSMF by elemental analysis.

	СНО ОСН ₃ ОН А	СН ₂ ОН ОСН ₃ ОН В	СH ₃ ОН С	ОСН ₃
Entry	Pressure (MPa)	Conv. (%)	Sel. (%)	
			В	С
1	0.5	>99.5	45.8	54.2
2	1	>99.5	37.8	62.2
3	1.5	>99.5	33.3	66.7
4	2	>99.5	32.2	67.8
5	3	>99.5	29.9	70.1

Table S4 Catalytic data in hydrodeoxygenation of vanillin over Pd/MSMF catalyst under various H_2 pressure.^{*a*}

^{*a*} Reaction conditions: 2 mmol of vanillin, S/C ratio at 200, 20 mL of water, temperature at 100°C, reaction for 1 h, Pd loading at 4.5 wt.%.

	СНО ОСН3 ОН А	CH ₂ OH OCH ₃		OCH ₃
Entry	Temperature (°C)	Conv. (%)	Sel.	(%)
			В	С
1	90	>99.5	46.4	53.6
2	100	>99.5	37.8	62.2
3	110	>99.5	23.4	76.6
4	120	>99.5	13.8	86.2
5	130	>99.5	3	97
6	150	>99.5		>99.5

Table S5 Catalytic data in hydrodeoxygenation of vanillin over Pd/MSMF catalyst at various temperature.^{*a*}

^{*a*} Reaction conditions: 2 mmol of vanillin, S/C ratio at 200, 20 mL of water, pressure at 1 MPa, reaction for 1 h, Pd loading at 4.5 wt.%.

CHO OCH3 OH A	СH ₂ OH ОСH ₃	С С С С С С С С С С С С С С С С С С С
Entry	Conv. (%)	Sel. (%)
1	>99.5	>99.5
2	>99.5	>99.5
3	>99.5	93
4	>99.5	94
5	>99.5	98
6	>99.5	87

Table S6 Catalytic data in hydrodeoxygenation of vanillin over Pd/MSMF catalyst under various recycles.^a

^{*a*} Reaction conditions: 2 mmol of vanillin, S/C ratio at 200, 20 mL of water,

temperature at 110 °C, pressure at 1 MPa, reaction for 2 h, Pd loading at 4.5 wt.%.

Supplementary Figure Captions

Figure S1. A photograph of MSMF.

Figure S2. SEM image of MSMF.

Figure S3. HRTEM image of Pd/MSMF.

Figure S4. Contact angle of a (A) water and (B) 2-methoxy-4-methylphenol droplet on the surface of MSMF.

Figure S5. Pd3d XPS spectra of (a) Pd/C and (b) Pd/MSMF.

Figure S6. Dependence of conversion and selectivity in hydrodeoxygenation of vanillin on the H_2 pressure over Pd/MSMF catalyst at temperature of 100 °C in 20 mL of water as a solvent and 2 mmol of vanillin as a substrate for 1 h with S/C ratio of 200 and Pd loading at 4.5 wt.%.

Figure S7. Dependence of conversion and selectivity in hydrodeoxygenation of vanillin on the temperature over Pd/MSMF catalyst under H_2 pressure of 1 MPa in 20 mL of water as a solvent and 2 mmol of vanillin as a substrate for 1 h with S/C ratio of 200 and Pd loading at 4.5 wt.%.

Figure S8. TEM image of Pd/C.

Figure S1

Figure S2

Figure S4.

Figure S5.

Figure S6.

Figure S7.

Figure S8.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013