Supporting Information

Facile synthesis of uniform α -Fe₂O₃ crystals and the facet-dependent

catalytic performance in photo-Fenton reaction

Yubao Zhao^a, Feng Pan^a, Hui Li^a, Tianchao Niu^a Guoqin Xu^a and Wei Chen * ^{a,b,c,d}

- ^a Department of Chemistry, National University of Singapore
- ^b Department of Physics, National University of Singapore

- ^c National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiang Su, China, 215123
- ^d NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411

* Corresponding Author: W. Chen, E-mail: phycw@nus.edu.sg

Characterization:

The morphology of the catalyst samples were determined by scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) on JEOL 6700F and JEOL 3010, respectively. X-ray diffraction patterns of the catalysts were obtained on a Rigaku D/MAX 2500 diffractometer with Cu radiation (Cu K α =0.15406 nm). BET surface area was measured via nitrogen sorption at 77 K on a surface area analyzer (QuadraSorb SI); the samples were degassed at 150 °C for ten hours before nitrogen adsorption

Dye adsorption measurement:

10 mg α -Fe₂O₃ catalysts, 50 ml aqueous solution containing Rhodamine B (2×10⁻⁵ mol/L) and 0.2 ml H₂O₂ (30 *wt*.%) was mixed in the Pyrex reactor. After 40 min of stirring in the dark, the solution was centrifuged and measured by a UV-Vis spectrometer. The dye adsorption on the catalyst was calculated from the following equation.

$$b = \frac{A_0 - A_s}{A_0} \times C_0 \times V \div m_{cata}.$$

b: adsorption of RhB on the catalyst; A_0 : the absorbance of the raw dye solution; A_s : the absorbance of filtrate after adsorption; C_0 : the concentration of the raw dye solution; *V*: the volume of the solution; m_{cata} : the mass of the catalyst.

Figure S1. Atomic arrangement of $\{10-10\}$, $\{0001\}$ and $\{10-12\}$ crystal facet. Red ball, oxygen atoms; yellow ball, surface exposed iron atoms; blue ball, bulk iron atoms. Fe_{3c}, Fe_{4c} and Fe_{5c} represents 3, 4 and 5-fold coordinated Fe atoms, respectively.

Figure S2. Atomic arrangement of $\{10-10\}$, $\{0001\}$ and $\{10-12\}$ crystal facet. Red ball, oxygen atoms; yellow ball in the white line boundary, surface exposed iron atoms; blue ball, iron atoms. Surface Fe density on $\{0001\}$ facet is $4.55/\text{nm}^2$ ($1/0.22 \text{ nm}^2$); $\{10-10\}$: $5.79/\text{nm}^2$ ($4/0.69 \text{ nm}^2$); $\{10-12\}$ facet: $9.76/\text{nm}^2$ ($4/0.41 \text{ nm}^2$).