Supplementary Data:

α-Fe₂O₃ nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic

Yucheng Du^{a,*}, Haiguang Fan^a, Liping Wang^a, Jinshu Wang^{a,**}, Junshu Wu^a, Hongxing Dai^{b,***}

^a Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China

^b Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China

* Corresponding author: Dr. Yucheng Du (Y.C. Du)

Tel. No.: +8610-6739-6129; Fax: +8610-6739-6129

E-mail address: ychengdu@bjut.edu.cn

** Co-corresponding author: Prof. Jinshu Wang (J.S. Wang)

Tel. No.: +8610-6739-6129; Fax: +8610-6739-6129

E-mail address: wangjs@bjut.edu.cn

*** Co-corresponding author: Prof. Hongxing Dai (H. X. Dai)

Tel. No.: +8610-6739-6118; Fax: +8610-6739-1983

E-mail address: <u>hxdai@bjut.edu.cn</u>

Content

Item	Page
Table S1	3
Fig. S1	4
Fig. S2	5
Fig. S3	6
Fig. S4	7
Fig. S5	8
Fig. S6	9
Fig. S7	10

FeCl ₃ concentration	Removal efficiency (%)	
(wt%)	As(III)	As(V)
0	46.51	52.73
6	83.17	90.25
8	99.98	100.00
10	96.77	98.36

Table S1. The As(III) and As(V) removal efficiency of the α -Fe₂O₃ nanowires/diatomite sample prepared with different FeCl₃ concentrations.

Fig. S1. TGA/DTA profiles of the α -FeOOH/diatomite sample.

Fig. S2. (a) SEM and (b) TEM images of the diatomite and (c) EDS spectrum of the

 α -Fe₂O₃ nanowires/diatomite sample

Fig. S3. Effect of adsorbent mass on the (a) As(III) and (b) As(V) removal efficiency of the α -Fe₂O₃ nanowires/diatomite sample at an As(III) or As(V) concentration of 10 mg/L.

Fig. S4. Effect of adsorption temperature on the (a) As(III) and (b) As(V) removal efficiency of the α -Fe₂O₃ nanowires/diatomite sample at an As(III) or As(V) concentration of 10 mg/L.

Fig. S5. Isothermal (a) As(III) and (b) As(V) adsorption profiles of the α -Fe₂O₃ nanowires/diatomite sample.

Fig. S6. The Langmuir and Freundlich regression curves of As(III) adsorption on the α -Fe₂O₃ nanowires/diatomite sample.

Fig. S7. The (A) Langmuir and (B) Freundlich regression curves of As(V) adsorption on the α -Fe₂O₃ nanowires/diatomite sample.