Supplementary Information

A novel strategy for low-temperature synthesis of Ruddlesden-Popper type layered perovskite $La_3Mn_2O_{7+\delta}$ for methane combustion

Xiaorui Du,^{ab} Guojun Zou,^{*a} Yan Zhang^a and Xiaolai Wang^{*a}

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. E-mail: zougj@licp.cas.cn, xlwanglicp@yahoo.com.cn; Fax: +86-931-8277088
^b Graduate University of Chinese Academy of Sciences, Beijing, 100049, China

Figure S1. The spin-polarized density functional theory (DFT) calculation simulation pictures: (a) the 5-atom LaMnO₃ unit cell (space group: Pm3m), (b) the modeled 24-atom La₃Mn₂O₇ unit cell (space group: I4/mmm), and (c) the modeled Cl doped La₃Mn₂O₆Cl.

	Miller				
2θ (degree)	$d_{exp}{}^a$ (Å)	Indices	$d_{cal}{}^{c}$ (Å)		
		(hkl) b			
15.733	5.6278	(0 0 4)	5.6279		
22.992	3.8648	(1 0 0)	3.8710		
25.822	3.4473	(1 0 3)	3.4402		
28.039	3.1795	(1 0 4)	3.1894		
30.307	2.9466	(1 0 5)	2.9353		
32.683	2.7376	(1 1 0)	2.7372		
40.206	2.2410	(1 0 8)	2.2761		
40.751	2.2123	(1 1 6)	2.2113		
46.890	1.9359	(2 0 0)	1.9355		
48.624	1.8709	(2 0 3)	1.8742		
52.674	1.7362	(2 1 0)	1.7312		
55.105	1.6652	(2 1 4)	1.6547		
58.016	1.5884	(2 1 5)	1.6158		
58.665	1.5723	(2 1 6)	1.5719		
68.187	1.3741	(2 2 0)	1.3686		
68.756	1.3641	(2 2 1)	1.3661		
73.232	1.2914	(3 0 0)	1.2903		
78.177	1.2216	(3 1 1)	1.2223		
82.527	1.1679	(2 2 10)	1.1694		
86.729	1.1218	(2 2 11)	1.1377		

Table S1.	The Miller	indices corre	sponding to	the X-ray	diffraction	peaks of	LLM-700
			1 0	J		1	

^{*a*} The experimental d values.

^b The calculated Miller indices based on the d_{exp} values and the lattice spacing formula. The space group was initially set to be *I4/mmm*, and the lattice spacing formula was

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$
. The peaks at $2\theta = 15.733^\circ$, 32.683° were initially assigned to the

(004) and (110) planes, respectively, and the preliminary lattice parameters a = b = 3.871 Å, and c = 22.5116 Å were consequently calculated.

^c The quasi *d* values calculated in turn based on the obtained lattice parameters and Miller indices.

The d_{cal} values were consistent with the d_{exp} values substantially, demonstrating that the space group and lattice parameter were set appropriately. The slight differences between d_{cal} and d_{exp} values may have resulted from the lattice distortion in LLM-700.

Table S2. The ICP-MS results of the LLM-700 sample.

	La ^b	Mn ^b	O ^c
Wt.%	63.74	17.05	19.21
n ^a	3	2.03	7.85

^{*a*} The atomic ratio of elements La, Mn and O.

^b Experimental values of elements La and Mn measured by inductively coupled plasma-mass spectrometry (ICP-MS).

^c The calculated value determined from the experimental values of elements La and Mn.

Figure S2. X-ray diffraction (XRD) patterns of the conventional LaMnO₃ calcined at 700 °C (LM-700), the sample with a nominal composition of La₃Mn₂O_{7+ δ} calcined at 700 °C (NLM-700), and the R-P type layered perovskite samples calcined at 700 °C (LLM-700); (\bigtriangledown) the typical peaks of the LLM-700 sample.

Figure S3. X-ray diffraction (XRD) pattern of the R-P type layered perovskite samples

calcinated at 1000 °C (LLM-1000).

Figure S4. O1s XPS profiles of different catalysts: (a) LLM-700, (b) LLM-1000, (c) LM-700, (d) LM-1000, (e) NLM-700, and (f) LLMC1-700. The binding energy of 529 to 530 eV is characteristic of the lattice oxygen (O^{2-} , denoted as O_a), and the binding energy of 531 to 532 eV might be assigned to absorbed surface oxygen ions with low coordination (denoted as O_{β}).