Electronic Supplementary Information (ESI) for:

Durian-like multi-functional Fe₃O₄/Au nanoparticles: synthesis, characterization and selective detection of benzidine

Zhijiang Wang,^{a,\dagger} Lina Wu,^{b,c,\dagger} Fuping Wang,^a Zhaohua Jiang^{*a,d} and Baozhong Shen^{*b,c}

^a School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China. Fax: 86-451-86413707; Tel: 86-451- 86402805; E-mail: jiangzhaohua@hit.edu.cn.

^b Department of Radiology, the 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. Fax: 86-451-82576509; Tel: 86-451- 85939999; E-mail: shenbzh@vip.sina.com.

^c Key Laboratory of Molecular Imaging in College of Heilongjiang Province, Harbin Medical University, Harbin 150001, China.

^d State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.

[†] These authors contributed equally to this work.

1. Characterization of building blocks for the nanocomposites.

Figure S1. TEM and EDS analyses of Fe_3O_4 nanoparticles (a), mercapto-modified Fe_3O_4 nanoparticle clusters (b), and gold nanoparticles (c).

2. Influence of Au:Fe₃O₄ ratio on benzidine detecting.

Code	Au nanoparticles $(1.4 \times 10^{-10} \text{ mol/L})$	Fe ₃ O ₄ nanoparticles $(3.2 \times 10^{-8} \text{ mol/L})$	Molar ratio of Au to Fe_3O_4
NC1	4 mL	4 mL	1:208
NC2	4 mL	2 mL	1:104
NC3	4 mL	1 mL	1:57
NC4	4 mL	0.2 mL	1:12

Table S1. The code and molar ratio of materials in synthesis of Fe₃O₄/Au nanocomposites.

Figure S2. UV-vis absorption spectra of different nanocomposite samples. It can found that there is almost no difference between the UV-vis absorption spectra of samples #NC3 and #NC4, indicating that when the molar ratio of Au:Fe₃O₄ reaches 1:57, the nanocomposites achieve the highest gold loading amount by present developed method. The further ICP-MS analysis showing gold content within a 3% difference between these two samples confirms this speculation.

Figure S3. The Raman spectra of 10^{-4} M benzidine collected on different nanocomposite samples. More gold amount achieves better SERS performance. As the gold amount of samples #NC3 and #NC4 is similar, they have comparable SERS enhancement.

3. Influence of heavy metal ions on the selectivity of developed nanosensor.

Figure S4. SERS spectra of 10^{-5} M benzidine recorded on the substrates of Fe₃O₄/Au nanocomposites, (a) without heavy metal ions, (b) with 10^{-5} M Hg²⁺, (c) with 10^{-5} M Cd²⁺ and (d) with 10^{-5} M Pb²⁺. As shown in this figure, there is no big difference observed in the Raman spectra. The Hg²⁺, Cd²⁺ and As⁵⁺ ions have little influence on the selectivity of the sensing system.