New alkoxylphenyl substituted benzo[1,2-b:4,5-b'] dithiophene-based polymers: synthesis and application in solar cells

Jun Yuan,^{‡a} Lu Xiao, ^{‡a} Bo Liu,^{‡ab} Yongfang Li,^c Yuehui He,^b Chunyue Pan,^a Yingping Zou^{*a,d}

^a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China E-mail: <u>vingpingzou@csu.edu.cn(Y.Zou)</u>

^b State key Laboratory for Powder Metallurgy, Central South University, Changsha

410083, China

^c Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^dKey Laboratory of Resources Chemistry of Nonferrous Metals (Central South University), Ministry of Education, Changsha, Hunan 410083, China

Fig.S1 ¹H NMR spectroscopy of the BDTPO monomer

Table S1: Optical and Electrochemical Properties of the Synthesized Conjugated Copolymers

Polymers	Absorption spectra				Cyclic voltammetry		
	$\mathrm{Sol}^{\mathrm{a}}$		Film ^b		<i>p</i> -doping	<i>n</i> -doping	
	λ_{max}	λ_{max}	λ_{onset}	$E_g^{opt \; \mathrm{c}}$	E_{on}^{ox} /HOMO ^d	E_{on}^{red} /LUMO ^d	E_g^{EC}
	(nm)	(nm)	(nm)	(eV)	(V)/(eV)	(V)/(eV)	(eV)
PBDTPO-DTBO	575	567	749	1.65	1.16 /-5.56	-0.72 /-3.68	1.88
PBDTPO-DTBT	540	556	765	1.62	1.06/-5.46	-0.74/-3.66	1.80

a.Measured in chloroform solution. b.Cast from chloroform solution. c.Bandgap estimated from the onset wavelength of the optical absorption. d.HOMO= -e (E_{on}^{ox} +4.4) (eV); LUMO= -e (E_{on}^{red} +4.4) (eV) using (eV) using Ag/AgCl as the reference electrode.

Fig. S2 UV-Vis absorption spectra of PBDTPO-DTBO and PBDTPO-DTBT in CHCl3 and films

Fig. S3 *J-V* curves of the PSCs based on PBDTPO-DTBO and PBDTPO-DTBT: $PC_{61}BM$, under illumination of AM 1.5, 100 mW/cm².

Active layer	V _{oc} (V)	J _{sc} (mAcm ⁻²)	FF (%)	PCE (%)
PBDTPO-DTBO:PC ₆₁ BM=1:1	0.94	7.6	45	3.2
PBDTPO-DTBO:PC ₆₁ BM=1:2	0.89	8.7	64	5.0
PBDTPO-DTBT:PC ₆₁ BM=1:1	0.79	6.9	47	2.6
PBDTPO-DTBT:PC ₆₁ BM=1:2	0.76	6.0	48	2.2

Table S2 Photovoltaic Data of Polymer Solar Cells Based on PBDTPO-DTBO and PBDTPO-DTBT Blended with $PC_{61}BM$

Fig.S4 *J-V* curves of the PSCs based on polymers: $PC_{71}BM$, under illumination of AM 1.5, 100 mW/cm².

Active layer	V _{oc} (V)	J _{sc} (mAcm ⁻²)	FF (%)	PCE (%)
PBDTPO-DTBO:PC71BM=1:1	0.90	9.5	56	4.8
PBDTPO-DTBO:PC71BM=1:1.5	0.89	11	64	6.2
PBDTPO-DTBO:PC71BM=1:2	0.88	9.8	65	5.6
PBDTPO-DTBO:PC71BM=1:3	0.87	8.7	59	4.5
PBDTPO-DTBT:PC71BM=1:1	0.78	6.4	51	2.6
PBDTPO-DTBT:PC71BM=1:1.5	0.78	7.4	48	2.8
PBDTPO-DTBT:PC71BM=1:2	0.78	9.3	47	3.4
PBDTPO-DTBT:PC71BM=1:3	0.74	6.6	38	1.8

Table S3: Photovoltaic Data of the Polymer Solar Cells Based on PBDTPO-DTBO andPBDTPO-DTBT Blended with $PC_{71}BM$

Fig.S5 *EQE* spectra of PSCs based on PBDTPO-DTBO and PBDTPO-DTBT: PC61BM (1:1 and 1:2, *w/w*).

Fig.S6 *EQE* spectra of PSCs based on PBDTPO-DTBO and PBDTPO-DTBT: $PC_{71}BM$ (1:1, 1:1.5, 1:2, and 1:3 *w/w*).