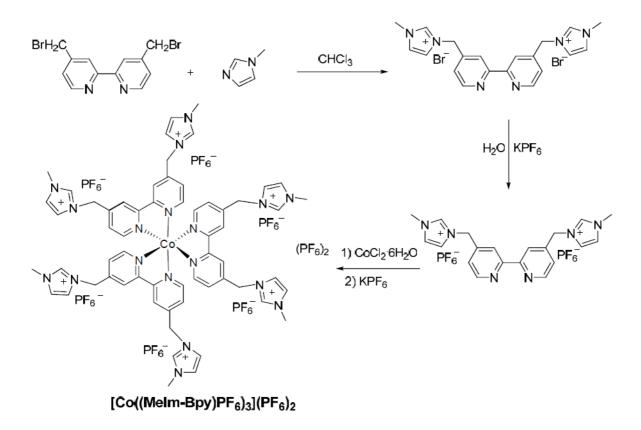
Electronic Supplementary Information

Imidazolium Functionalized Cobalt Tris(bipyridyl) Complex Redox Shuttles for High Efficient Ionic Liquid Electrolyte Dye-Sensitized Solar Cells

Dan Xu, Haigang Zhang, Xiaojian Chen, Feng Yan*

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science; Soochow University, Suzhou, 215123, China. Email: <u>fyan@suda.edu.cn</u>


10 Chemicals

5

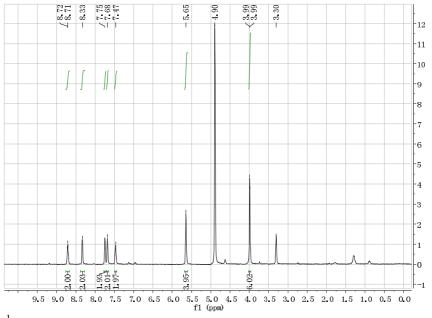
4,4'-Dimethyl-2,2'-dipyridyl, potassium dichromate (K₂Cr₂O₇), sodium borohydride (NaBH₄), hydrobromic acid (48 wt.% solution), 1-methylimidazole, potassium hexafluorophosphate (KPF₆), cobalt chloride, lithium perchlorate (LiClO₄) were purchased from Alfa Aesar. 4.4'-Bis(bromomethyl)-2,2'-bipyridine was prepared according the literature procedure.¹ to $_{15}$ [Co(dmp)₃](PF₆)₂ (dmp = 4,4'-dimethyl-2,2'-bipyridine) was synthesized follow the literature method.² 1-Ethyl-3-methylimidazolium thiocyanate (EMINCS), nitrosonium tetrafluoroborate (NOBF₄) and 1-propyl-3-methylimidazolium iodine (PMII) were purchased from Merck. H₂PtCl₆ was purchased from Aldrich. *Cis*-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium(II) bis(tetrabutylammonium) (N719) was purchased from Solaronix SA (Switzerland). 20-nm-sized TiO₂ ²⁰ particles was prepared according to the literature procedure by modifying the porosity to improve the mass transport of the $[Co((MeIm-Bpy)PF_6)_3]^{2+/3+}$ redox couple.³ Fluorine-doped tin oxide overlayer (FTO) glass electrodes (7 Ω /Sq), 200 nm-diameter light-scattering TiO₂ colloidal were purchased from Dalian Hepat Chroma Solar Tech. Co., Ltd (China). All general reagents and solvents were obtained from commercial sources.

5

Synthesis of the imidazolium functionalized cobalt tris(bipyridyl) complex ([Co((MeIm-Bpy)PF_6)_3](PF_6)_2)

Scheme S1. General synthetic procedure for [Co((MeIm-Bpy)PF₆)₃](PF₆)₂.

Synthesis of 3,3'-(2,2'-bipyridine-4,4'-diylbis(methylene))bis(1-methyl-1*H*-imidaz-ol-3-ium) bromide ([MeIm-Bpy]Br)


A mixture containing 4,4'-bis(bromomethyl)-2,2'-bipyridine (2.0 g, 5.88 mmol) and 1methylimidazole (0.97 g, 11.8 mmol) in chloroform was refluxed for 6 h and then allowed to cool down to RT. The resulting precipitate was filtered, washed with diethyl ether and dried. ¹H NMR (400 MHz, D₂O): *δ* 8.71 (s, 2H, H_{py}), 8.33 (s, 2H, H_{py}), 7.75 (s, 2H, H_{im}), 7.68 (s, 2H, H_{im}), 7.47 (s, 2H, H_{py}), 5.65 (s, 4H, CH₂), 3.99 (s, 6H, N-CH₃).

Synthesis of 3,3'-(2,2'-bipyridine-4,4'-diylbis(methylene))bis(1-methyl-1*H*-imidaz-ol-3-ium)hexa fluorophosphate ([MeIm-Bpy]PF₆)

A solution of [MeIm-Bpy]Br (2.0 g, 3.96 mmol) and KPF₆ (1.46 g, 7.93 mmol) in water was stirred at RT for 2 h. The resulting precipitate was filtered, washed with water, and vacuum dried at 80 ⁵ °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.23 (s, 2H, NCHN), 8.71 (s, 2H, H_{py}), 8.38 (s, 2H, H_{py}), 7.83 (s, 2H, H_{im}), 7.75 (s, 2H, H_{im}), 7.41 (s, 2H, H_{py}). 5.58 (s, 4H, CH₂), 3.86 (s, 6H, N-CH₃).

Synthesis of Co((MeIm-Bpy)PF₆)₃](PF₆)₂

CoCl₂·6H₂O (0.22 g, 0.94 mmol) was added to the methanolic solution of [MeIm-Bpy]PF₆ (1.8 g, 2.83 mmol). After stirring at reflux for 2 h, excess KPF₆ (0.8 g) was added to form a precipitate. The precipitated complex was filtered, washed with methanol, and dried under vacuum to give a yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 9.20 (s, 6H, NCHN), 8.67-8.68 (d, 6H, H_{py}), 8.34 (s, 6H, H_{py}), 7.79 (s, 6H, H_{im}), 7.71 (s, 6H, H_{im}), 7.37-7.38 (d, 6H, H_{py}). 5.54 (s, 12H, CH₂), 3.82 (s, 18H, N-CH₃).

Fig. S1 ¹H NMR (D_2O) spectrum of [MeIm-Bpy]Br.

15

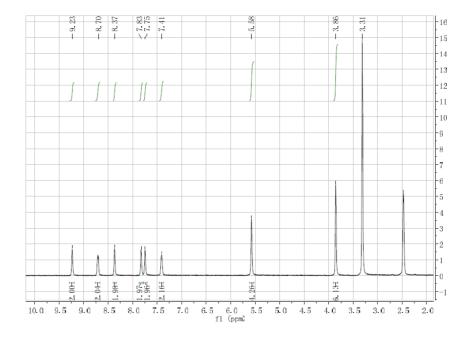


Fig. S2¹H NMR (DMSO-*d*₆) spectrum of [MeIm-Bpy]PF₆.

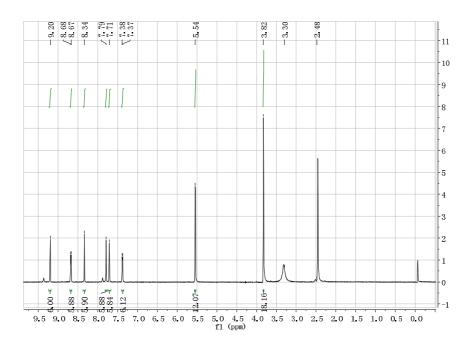


Fig. S3 ¹H NMR (DMSO- d_6) spectrum of [Co((MeIm-Bpy)PF₆)₃](PF₆)₂.

5

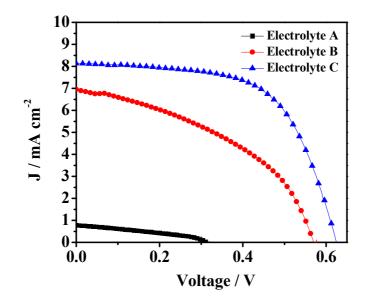
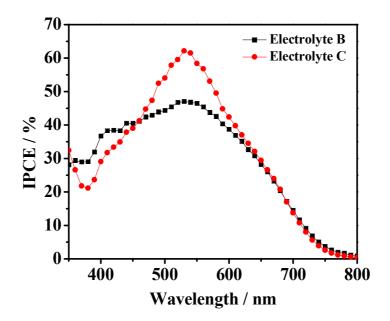



Fig. S4 The J-V curves of the DSSCs containing ionic liquid-based Electrolytes A, B and C under simulated AM 1.5 solar spectrum irradiation at 100 mW cm⁻².

Fig. S5 The IPCE *vs.* wavelength profiles for the devices based on the ionic liquid Electrolytes B and C.

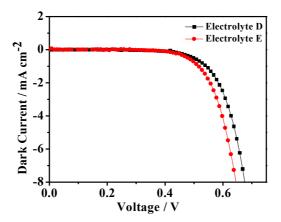


Fig. S6 Dark current-voltage characteristics of the DSSCs based on Electrolytes D and E were tested using an aluminium foil mask with an aperture area of 0.1 cm^2 .

 $_{\rm 5}$ Table S1. The photovoltaic properties of the DSSCs based on binary ionic liquid electrolyte under simulated AM 1.5 solar spectrum illumination at 100 mW cm⁻² (average of five cells).

Electrolyte	Composition	$\frac{J_{\rm sc}}{({\rm mA~cm}^{-2})}$	$V_{\rm oc}$ (V)	FF	РСЕ (%)
E 1	0.03 M $[Co((MeIm-Bpy)PF_6)_3]^{2+}$, 0.02 M NaOBF ₄ , 0.14 M GuNCS, 0.5 M TBP in PMII:EMINCS = 13:7 (v:v)	14.8 ± 0.1	0.711 ± 0.002	0.679 ± 0.008	7.14 ± 0.10
E 2	0.05 M $[Co((MeIm-Bpy)PF_6)_3]^{2+}$, 0.02 M NaOBF ₄ , 0.14 M GuNCS, 0.5 M TBP in PMII:EMINCS = 13:7 (v:v)	15.1 ± 0.1	0.706 ± 0.002	0.691 ± 0.007	7.37 ± 0.05
E 3	0.08 M $[Co((MeIm-Bpy)PF_6)_3]^{2+}$, 0.02 M NaOBF ₄ , 0.14 M GuNCS, 0.5 M TBP in PMII:EMINCS = 13:7 (v:v)	14.9 ± 0.2	0.698 ± 0.003	0.672 ± 0.008	6.98 ± 0.08
E 4	0.12 M $[Co((MeIm-Bpy)PF_6)_3]^{2+}$, 0.02 M NaOBF ₄ , 0.14 M GuNCS, 0.5 M TBP in PMII:EMINCS = 13:7 (v:v)	13.1 ± 0.2	0.658 ± 0.003	0.671 ± 0.006	5.78 ± 0.08

References:

- 1 S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, *J. Am. Chem. Soc.* 2010, **132**, 16714–16724.
- ⁵ 2 I. Gillaizeau-Gauthier, F. Odobel, M. Alebbi, R. Argazzi, E. Costa, C. A. Bignozzi, P. Qu and G. J. Meyer, *Inorg. Chem.* 2001, 40, 6073–6079.
- 3 H. Seon Kim, S. B. Ko, I. H. Jang and N. G. Park, Chem. Commun., 2011, 47, 12637–12639.
- 10
- 15

- 20
- 25