Supporting Information

for:

Synthesis of uniform and superparamagnetic Fe₃O₄ nanocrystals embedded in a porous carbon matrix for superior lithium ion battery anode

Shan Wu, Zhiyuan Wang, Chunnian He^{*}, Naiqin Zhao *, Chunsheng Shi, Enzuo Liu

and Jiajun Li

School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin +86 300072, China E-mail: cnhe08@tju.edu.cn, and nqzhao@tju.edu.cn

Figure S1 (a) and (b) XPS spectra of the Fe_3O_4/C composite. (c) BET specific surface area and (d) pore size distribution of the Fe_3O_4/C composite.

Figure S2 TEM images of the carbonization products synthesized without (a) $Fe(NO_3)_3 \cdot 9H_2O$, (b) citric acid, and (c) NaCl. (d) Cycling performance of bare carbon matrix obtained by removing the Fe₃O₄ from the Fe₃O₄/C composite, cycling took place between 0.005 and 3.00 V vs. Li/Li⁺ at a cycling rate of 924 mA g⁻¹.

Figure S3 (a) and (b) TEM images of the Fe_3O_4/C composite obtained at half and double $Fe(NO_3)_3 \cdot 9H_2O$ precursor concentration, which were indicated as sample B and C, respectively. Cycling performance of (c) sample B and (d) sample C, cycling took place between 0.005 and 3.00 V vs. Li/Li⁺ at a cycling rate of 924 mA g⁻¹ (1 C).