
Supplementary Information:

Enhanced photoelectrochemical water splitting on novel nanoflake WO₃ electrodes by dealloying of amorphous Fe-W alloys

Jun Zhang^a, Yunhan Ling^{a,*}, Wubin Gao^a, Song Wang^a, Jiangtao Li^b

^a Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, P. R. China. ^b Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Corresponding author: yhling@mail.tsinghua.edu.cn

Fig. S1 FESEM images of nanoflake before (a) and after (b) annealing treatment at 500° C in air for 3 h. The nanoflake WO₃ was obtained by dealloying the as-deposited amorphous Fe-W film in a dilute HNO₃ solution (3.5 wt %) for 20 h at room temperature.

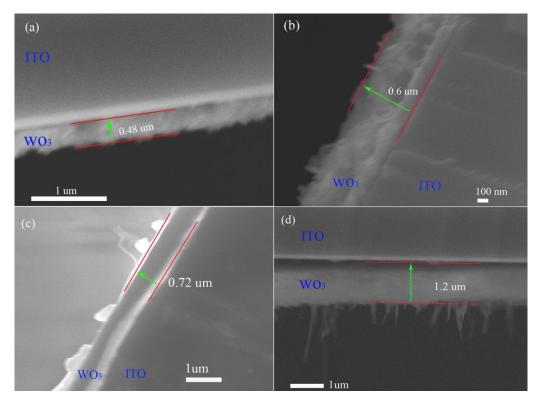


Fig. S2 FESEM images of WO₃ film prepared on ITO substrate. Images (a), (b), (c) and (d) correspond to sample 1, 2, 3 and 4, with electro-deposition duration of 75 s, 2 min, 4 min and 5 min, respectively.

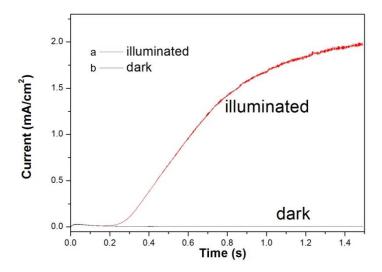


Fig. S3 Photoelectrochemical current-potential curves for the sample which underwent the potentiostatic polarization measurement under dark and AM 1.5 solar light (100 mW/cm²) in H_2SO_4 (0.5 M) on tungsten substrate.

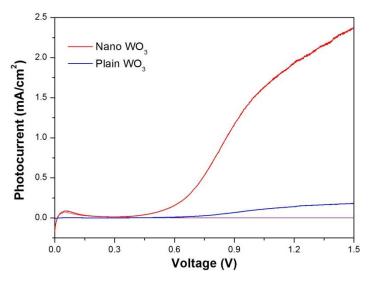


Fig. S4 Photoelectrochemical current-potential curves for nanoflake and plain WO_3 electrodes under dark and AM 1.5 solar light (100 mW/cm²) in HClO₄ (1 M) on tungsten substrate.