Electronic Supplementary Information

Size and shape fine-tuning of SnO₂ nanoparticles for highly efficient and stable dye-sensitized solar sells

Ludmila Cojocaru,^a Céline Olivier,*^a Thierry Toupance,*^a Elisabeth Sellier,^b and Lionel Hirsch^c

^a Université de Bordeaux, Institut des Sciences Moléculaires, ISM UMR 5255 CNRS, 351 Cours de la Libération, F-33405 Talence Cédex, France. Fax: + 33 5 40006994; Tel: + 33 5 40002523; E-mail: <u>t.toupance@ism.u-bordeaux1.fr</u>

^b Université de Bordeaux, CREMEM, Avenue des Facultés, bât B8, F-33405 Talence Cédex, France.

^c Université de Bordeaux, Laboratoire de l'Intégration du Matériau au Système, UMR 5218 CNRS, 16 Avenue Pey-Berland, F-33607 Pessac Cédex, France.

 N_2 sorption measurements

 N_2 adsorption-desorption isotherms recorded for scraped off *nano*SnO₂, *nano*SnO₂&*octa*SnO₂ and *octa*SnO₂ films after TiCl₄ post-treatment are given in Fig. S1.

Fig. S1 N₂ adsorption-desorption isotherms for *nano*SnO₂ (square, black), *nano*SnO₂&*octa*SnO₂ (circle, blue) and *octa*SnO₂ (up-triangle, red) films after TiCl₄ post-treatment.

X-ray Photoelectron Spectroscopy

XPS spectra of *nano*SnO₂ and *nano*SnO₂_*octa*SnO₂ photoanodes are given in Fig. S2, S3 and S4.

Fig. S2 XPS survey spectra of *nano*SnO₂ (**A**) and *nano*SnO₂_*octa*SnO₂ (**B**) photoanodes with (full line) and without TiCl₄ (dashed line) post-treatment.

Fig. S3 XPS Sn3d region of *nano*SnO₂ (**A**) and *nano*SnO₂_*octa*SnO₂ (**B**) photoanodes without post-treatment.

Fig. S4 XPS Sn3d and Ti2p regions of *nano*SnO₂ (**A**, **C**) and *nano*SnO₂_*octa*SnO₂ (**B**, **D**) photoanodes after TiCl₄ post-treatment.

ATR-FTIR spectroscopy

The ATR-FTIR spectra of N719-sensitized $nanoSnO_2$ and $octaSnO_2$ layers with or without $TiCl_4$ -treatment are given in Fig. S5.

Fig. S5 ATR-FTIR spectra of N719 dye (powder, green), N719-sensitized nanoSnO₂ (black) and octaSnO₂ (red) layers with (**B**) or without (**A**) TiCl₄ post-treatment.

UV-visible diffuse reflectance spectroscopy

The UV-visible diffuse reflectance spectra of nanoSnO₂, nanoSnO₂&octaSnO₂ and nanoSnO₂_octaSnO₂ films were recorded on a Varian Cary 5000 spectrophotometer. They are shown in Fig. S6.

Fig. S6 UV-visible diffuse reflectance spectra of *nano*SnO₂ (black), *nano*SnO₂&octaSnO₂ (blue) and *nano*SnO₂_octaSnO₂ (red) films without TiCl₄ post-treatment.

Characterization of SnO₂-based DSCs

The photovoltaic parameters of the SnO₂-based DSCs measured just after assembling (within 2 hours) are reported in Table S1.

Table S1. Photovoltaic properties of DSCs assembled with different SnO_2 photoanodes just after assembling. Incident power: AM1.5G 100 mW.cm⁻².

Photoanode	TiCl ₄	Th ^a (µm)	J_{sc} (mA.cm ⁻²)	V _{oc} (mV)	FF (%)	η (%) ^c
nanoSnO ₂	none	13	10.3	440	41	1.9
	with	13	12.9	510	47	3.1
$nano SnO_2_$	none	22	9.4	390	53	1.9
octa SnO ₂	with	22	13.9	460	49	3.2
nanoSnO ₂ &	none	11	9.4	430	39	1.6
octaSnO ₂	with	11	9.5	510	50	2.4
octaSnO ₂	none	8	2.1	600	42	0.5
	with	8	2.8	700	34	0.7

^a Th: Film thickness determined from cross-sectional SEM micrographs; uncertainty $\pm 1 \mu m$. ^b A: Amount of dye chemisorbed; uncertainty $\pm 5\%$. ^c measured for at least three different cells; uncertainty $\pm 0.05\%$.