Supporting Information

General Synthesis of Rare-Earth Orthochromites with Quasi-Hollow Nanostructures and Their Magnetic Properties

Shuijin Lei,*^{*a*} Lei Liu,^{*a*} Chunying Wang,^{*a*} Chuanning Wang,^{*a*} Donghai Guo,^{*a*} Suyuan

Zeng,^b Baochang Cheng,^a Yanhe Xiao,^a and Lang Zhou^a

^aSchool of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi

330031, P. R. China

^bSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China

*To whom correspondence should be addressed. E-mail: shjlei@ncu.edu.cn

Figure S1. XRD patterns of the sample prepared by the direct reaction of K_2CrO_4 and $Sm(NO_3)_3$ aqueous solution at room temperature followed with annealing at 400 °C in nitrogen ambient.

All the diffraction peaks can be indexed to the monoclinic structure of $\text{KSm}(\text{CrO}_4)_2$ with lattice constants of a = 8.682 Å, b = 7.351 Å, c = 10.873 Å and $\beta = 91.83^\circ$, which are in good agreement with the literature values (JCPDS Card File No. 45-0201, a = 8.673 Å, b = 7.346 Å, c = 10.903 Å and $\beta = 91.89^\circ$). No characteristic diffraction peaks due to other impurities can be observed.

Figure S2. TEM images of the EuCrO₃ sample after annealing at 1200 $^{\circ}$ C in N₂ atmosphere.

Figure S3. SEM images of the as-synthesized samples for (a) LaCrO₃, (b) PrCrO₃, (c) NdCrO₃ and (d) SmCrO₃ before annealing, and the corresponding 800 °C annealing samples for (e) LaCrO₃, (f) PrCrO₃, (g) NdCrO₃ and (h) SmCrO₃, respectively. Inset in S3e gives a close-up TEM image at high magnification of the annealing LaCrO₃ sample.

Figure S4. TEM images of the as-prepared $NdCrO_3$ samples (a) before and (b) after annealing.

Figure S5. SEM images of the representative (a) $KEu(CrO_4)_2$ and (b) $KNd(CrO_4)_2$ precursors synthesized at room temperature by the direct precipitation between $Eu(NO_3)_3/Nd(NO_3)_3$ and K_2CrO_4 aqueous solution.

Table S1. Summary of the magnetic data based on the temperature dependence of the magnetization for all the as-prepared rare-earth orthochromites samples via a general solvothermal *in-situ* reduction route

RCrO ₃	$T_{N1}(\mathbf{K})$	$ \Theta $ (K)	С	Experimental $\mu_{\rm eff} (\mu_B)^a$	Theoretical $\mu_{\rm eff} (\mu_B)^{b}$	$\mu_{\mathrm{R}^{^{3+}}}(\mu_{B})^{c}$	$\mu_{\mathrm{Cr}}{}^{_{3+}}(\mu_{B}){}^{d}$
LaCrO ₃	288	947	3.11	5.00	3.87	0	3.87
PrCrO ₃	239	316	5.99	6.95	5.27	3.58	3.87
NdCrO ₃	224	324	4.68	6.14	5.30	3.62	3.87
SmCrO ₃	192	502	3.89	5.60	3.96	0.84	3.87
EuCrO ₃	181	1139	22.46	13.46	3.87	0	3.87
GdCrO ₃	167	37	8.16	8.11	8.83	7.94	3.87
DyCrO ₃	145	30	14.19	10.70	11.31	10.63	3.87
HoCrO ₃	140	25	14.10	10.67	11.28	10.60	3.87
YCrO ₃	140	327	2.35	4.35	3.87	0	3.87
ErCrO ₃	134	106	20.83	12.96	10.34	9.59	3.87
TmCrO ₃	124	45	8.06	8.06	8.50	7.57	3.87
YbCrO ₃	117	145	4.67	6.14	5.97	4.54	3.87
LuCrO ₃	110	369	3.00	4.92	3.87	0	3.87

^{*a*}The effective magnetic moment (μ_{eff}) in units of the Bohr magneton (μ_B) is evaluated using the formula: $\mu_{eff} = (3k_BC/N_A)^{1/2} = 2.84 \cdot C^{1/2}$, where k_B is the Boltzmann constant, *C* is the Curie constant and N_A is Avogadro's number. ^{*b*}The theoretical value of μ_{eff} is obtained by $[(\mu_R^{3+})^2 + (\mu_{Cr}^{3+})^2]^{1/2}$. ^{*c*} μ_R^{3+} can be calculated by $g[J(J+1)]^{1/2}$. ^{*d*} μ_{Cr}^{3+} can be calculated by $2[S(S+1)]^{1/2}$, where S = 3/2.