## **Electronic Supplementary Information**

## Synthesis of Co<sub>2</sub>SnO<sub>4</sub> hollow cubes encapsulated in graphene as high capacity anode materials for Lithium-Ion Batteries

Jingjing Zhang<sup>a</sup>, Jianwen Liang<sup>a</sup>, Yongchun Zhu<sup>a</sup>, \*, Denghu Wei<sup>a</sup>, Long Fan<sup>a</sup> and Yitai Qian<sup>a, b, \*</sup>

<sup>a</sup> Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P.R. China. Tel: +86-551-63601589; E-mail: ychzhu@ustc.edu.cn

<sup>b</sup> School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China. Tel: +86-551-63607234; E-mail: ytqian@ustc.edu.cn



**Fig. S1.** SEM images of a series of temperature-dependent experiments of precursor (a) prepared at room temperature, (b) at 100 °C, (c) at 120 °C and (d) 140 °C.

## Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is O The Royal Society of Chemistry 2014



**Fig. S3.** BJH porous distribution of  $Co_2SnO_4$  HCs (V = differential pore volume, D = pore size)



Fig. S4. SEM images of (a,b) the precursor and its TEM pattern (inset b) and (c,d)

Fig. S5. Typical EDX spectrums of Co<sub>2</sub>SnO<sub>4</sub> HCs.







Fig. S6. TEM image and corresponding oxygen, cobalt, tin, and carbon elemental mapping of  $Co_2SnO_4$  HCs@GO.

Fig. S7. Typical XRD patterns of Co<sub>2</sub>SnO<sub>4</sub> HCs@rGO.



Fig. S8. Cyclic voltammograms of Co<sub>2</sub>SnO<sub>4</sub> NCs at a scanning rate of 0.1 mVs<sup>-1</sup>.



**Figure S9.** (a) TEM (high-magnification TEM image inset) and (b) FESEM images of  $Co_2SnO_4$  HCs@GO after cycling for 100cycles. In the FESEM image, the hollow cubes are marked with black circle.



Fig. S10. Charge/discharge profiles of the graphite.



**Fig. S11.** Coulombic efficiency of (a) cycle performance at a current density of 100 mA  $g^{-1}$  between 0.01 and 2.5 V and (b) Rate capability at various current densities between 0.01 and 2.5 V for Co<sub>2</sub>SnO<sub>4</sub> NCs and Co<sub>2</sub>SnO<sub>4</sub> HCs.

For Co<sub>2</sub>SnO<sub>4</sub> NCs and Co<sub>2</sub>SnO<sub>4</sub> HCs, the coulombic efficiency maintains

consistently at ~97% up to 100 cycles (shown in Fig. S11a) and also keeps at ~97% following the rising rates (in Fig. S11b).



**Fig. S12.** (a) The initial discharge-charge curves for  $Co_2SnO_4$  HCs@rGO (5-6 mg) at a current density of 100 mA g<sup>-1</sup> between 0.01 and 2.5 V, (b) cycle performance at a current density of 100 mA g<sup>-1</sup> between 0.01 and 2.5 V, and the coulombic efficiency of the  $Co_2SnO_4$  HCs@rGO (5-6 mg).

| Material                                 | Reversible<br>capacity<br>(mAh g <sup>-1</sup> ) | Percentage of<br>theoretical<br>capacity | current<br>density<br>(mAg <sup>-1</sup> ) | Ref.         |
|------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------|--------------|
| Co <sub>2</sub> SnO <sub>4</sub> HCs@rGO | 1016.2/100cycles                                 | 91.9%                                    | 100                                        | this<br>work |
| Co <sub>2</sub> SnO <sub>4</sub> HCs     | 410/100cycles                                    | 37.1%                                    | 100                                        | this<br>work |
| Co <sub>2</sub> SnO <sub>4</sub> NCs     | 179/100cycles                                    | 16.2%                                    | 100                                        | this<br>work |

Table 1 comparison between  $Co_2SnO_4$  hollow cubes/graphene composite ( $Co_2SnO_4$  HCs@rGO) (this work) and the reported  $Co_2SnO_4$  compounds.

| solid Co <sub>2</sub> SnO <sub>4</sub>                                             | 490/2cycles    | 44.3% | 50  | 6  |
|------------------------------------------------------------------------------------|----------------|-------|-----|----|
| bulk Co <sub>2</sub> SnO <sub>4</sub>                                              | 112.8/50cycles | 11%   | 30  | 8  |
| Co <sub>2</sub> SnO <sub>4</sub> nanocrystals                                      | 555.9/50cycles | 50.3% | 30  | 8  |
| Co <sub>2</sub> SnO <sub>4</sub> @C core-shell nanostructures                      | 474/75cycles   | 42.8% | 100 | 18 |
| Co <sub>2</sub> SnO <sub>4</sub> nanoparticles@<br>multiwalled carbon<br>nanotubes | 898.8/50cycles | 81.3% | 50  | 19 |