Electronic Supplementary Information for

Enhanced Hydrogenation of Olefins and Ketones with Ruthenium Complex Covalently Anchored on Graphene Oxide

Qingshan Zhao, Yang Li, Ru Liu, Ao Chen, Guoliang Zhang, Fengbao Zhang and Xiaobin Fan*

State Key Laboratory of Chemical Engineering, Key Laboratory for Green Chemical Technology, School of Chemical Engineering & Technology, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin300072, China

E-mail: xiaobinfan@tju.edu.cn

Table of Contents

1. Experimental Section

1.1 Control experiments

2. Supplementary Figures

Fig. S1 EDS spectrum of Ru-f-GO.

Fig. S2 Photographs of GO (1), NH_2 -*f*-GO (2) and Ru-*f*-GO (3) dispersed in ethanol.

Fig. S3 SEM and TEM images of (a) (b) GO, (c) (d) NH₂-f-GO and (e) (f) Ru-f-GO.

Fig. S4 (a) SEM image of Ru–*f*–GO and corresponding quantitative EDS element mapping of (b) N, (c) O and (d) P.

Fig. S5 (a) SEM image of NH_2 -*f*-GO and corresponding quantitative EDS element mapping of (b) C, (c) N and (d) Si.

Fig. S6 Ru 3p3/2 XPS spectra of (a) $Rucl_2(PPh_3)_3$, (b) Ru-f-GO before the hydrogenation reactions and (c) Ru-f-GO after the hydrogenation reactions.

1. Experimental Section

1.1 Control experiments

To verify the crucial role of the aminosilane ligand spacer, control experiments were carried out as follows: 200 mg of GO was added to an anhydrous toluene solution of $RuCl_2(PPh_3)_3$ (150 mg), and the solution was refluxed under N₂ atmosphere for 24 h. The mixture was filtrated and washed, followed by freeze-drying. The resulting solid was tested by Quantitative energy dispersive X-ray spectroscopy (EDS) and trace of ruthenium was determined. The resulting solid also showed no inherent catalytic activity in hydrogenation of olefins. These results exclude the possibility of $RuCl_2(PPh_3)_3$ reacting with GO directly and shows the key role of the aminosilane ligand spacer in the coordination process, which also provide more evidence for the coordination interaction, not a simple physical absorption.

Fig. S1 The EDS spectrum of Ru–*f*–GO. Ruthenium shows an element mass ratio of 1.31 %, which is in line with the XPS analysis.

Fig. S2 Photographs of GO (1), NH_2 –*f*–GO (2) and Ru–*f*–GO (3) dispersed in ethanol. The color changes from yellow to brown and black after the silvlation and coordination reactions.

Fig. S3 SEM and TEM images of (a) (b) GO, (c) (d) NH_2 -f-GO and (e) (f) Ru-f-GO.

Fig. S4 (a) SEM image of Ru–*f*–GO and corresponding quantitative EDS element mapping of (b) N, (c) O and (d) P.

Fig. S5 (a) SEM image of NH_2 –*f*–GO and corresponding quantitative EDS element mapping of (b) C, (c) N and (d) Si. All the elements are homogeneously distributed on the whole surface of GO.

Fig. S6 Ru 3p3/2 XPS spectra of (a) $Rucl_2(PPh_3)_3$, (b) Ru-f-GO before the hydrogenation reactions and (c) Ru-f-GO after the hydrogenation reactions.