Supporting Information

Highly Active, Durable and Recyclable Ordered Mesoporous Magnetic Organometal Catalysts Promoted Organic Reactions in Water

Fang Zhang,^{a, b} Mingzhen Chen,^a Xiaotao Wu,^a Wei Wang^{b,*} and Hexing Li^{a,*}

^a The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Lab of

Rare Earth Functional Materials, Shanghai Normal University, China

^b Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-000, USA

Scheme S1 Schematic illustration of the synthetic procedure of (a) M-PPh₂-SiO₂@Fe₃O₄ and (b) M-PPh₂-MCM-41 catalysts ($M = Pd^{2+}$ or Rh⁺).

Scheme S2 Dependence of the coordination model on the P/M ratio of different catalysts.

Sample	Pd Loading	P content	Particle Size	\mathbf{S}_{BET}	D_P	V_P
	(mmmol/g)	(mmmol/g)	(nm)	(m ² /g)	(nm)	(cm ³ /g)
Pd-PPh ₂ -SiO ₂ @Fe ₃ O ₄	0.0109	0.110	440	35	1.0	0.030
PPh2-MCM-41@SiO2@Fe3O4	/	0.380	/	268	2.9	0.43
Pd-PPh ₂ -MCM-41@SiO ₂ @Fe ₃ O ₄	0.0723	0.503	520	240	2.8	0.37
Pd-PPh ₂ -MCM-41	0.161	0.516	10~1500	551	2.5	0.60
Pd-PPh ₂ -MCM-41@SiO ₂ @Fe ₃ O ₄ ^a	0.0683	0.290	530	170	2.8	0.21
Pd-PPh ₂ -SiO ₂ @Fe ₃ O ₄ ^a	0.00896	0.195	445	31	1.0	0.030
Pd-PPh ₂ -MCM-41 ^a	0.150	0.560	10~1500	510	2.5	0.57
Rh-PPh ₂ -MCM-41@SiO ₂ @Fe ₃ O ₄	0.0765	0.496	530	170	2.8	0.21
Rh-PPh ₂ -SiO ₂ @Fe ₃ O ₄	0.0120	0.108	445	31	1.0	0.030
Rh-PPh ₂ -MCM-41	0.167	0.510	10~1500	510	2.5	0.57

Table S1 Elemental analysis and structural parameters of different catalysts

^a The catalysts after being reused for 8 times.

Figure S1 Wide-angle XRD patterns of Fe_3O_4 and Pd-PPh₂-MCM-41@SiO₂@Fe₃O₄.

Figure S2 FT-IR spectra of Fe_3O_4 , $SiO_2@Fe_3O_4$, PPh_2 -MCM-41@SiO_2@Fe_3O_4, and Pd-PPh_2-MCM-41@SiO_2@Fe_3O_4 samples.

Figure S3 XPS spectra of Pd-PPh₂-MCM-41@SiO₂@Fe₃O₄, Pd-PPh₂-SiO₂@Fe₃O₄, and PdCl₂(PPh₃)₂.

Figure S4 XPS spectra of $RhCl(PPh_3)_3$ and $Rh-PPh_2-MCM-41@SiO_2@Fe_3O_4$ catalysts.

Figure S5 (a) Low-angle XRD pattern and (b) N_2 sorption isotherm of the Rh-PPh₂-MCM-41@SiO₂@Fe₃O₄. The attached is the HRTEM image.

Figure S6 XPS spectra of the Pd-PPh₂-MCM-41@SiO₂@Fe₃O₄ catalyst after being reused repetitively for 8 times.

Figure S7 Low-angle XRD pattern (a) and N_2 adsorption-desorption curve (b) of the Pd-PPh₂-MCM-41@SiO₂@Fe₃O₄ catalyst after being reused repetitively for 8 times.