Supporting Information For:

Novel Bi₂S₃/Bi₂O₂CO₃ heterojunction photocatalysts with enhanced visible light responsive activity and wastewater treatment

Na Liang^a, Jiantao Zai^{*a}, Miao Xu^a, Qi Zhu^a, Xiao Wei^a and Xuefeng Qian^{*a} School of Chemistry and Chemical Engineering

State Key Laboratory of Metal Matrix Composites

Shanghai Jiao Tong University, Shanghai, 200240 (P. R. China)

E-mail: xfqian@sjtu.edu.cn; zaijiantao@sjtu.edu.cn

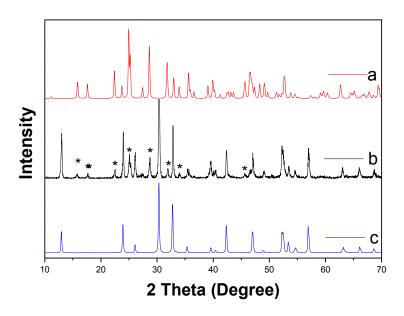


Fig. S1 XRD pattern of obtained 25 mol% $Bi_2S_3/Bi_2O_2CO_3$ composite after further being treated by hydrothermal process at 180 °C for 6hrs (b), Bi_2S_3 (JCPDS card No. 17-0320, a) and $Bi_2O_2CO_3$ (JCPDS card No. 41-1488, c) standard patterns.

Fig. S1 shows that XRD pattern of the obtained 25 mol% $Bi_2S_3/Bi_2O_2CO_3$ composite, which was further treated by hydrothermal process at $180\,^{\circ}\text{C}$ for 6hrs. From which one can see that Bi_2S_3 diffraction peaks (JCPDS card No. 17-0320) appear besides of that of $Bi_2O_2CO_3$ (JCPDS card No. 41-1488). This result indicates that $Bi_2S_3/Bi_2O_2CO_3$ composite can be prepared, and the hydrothermal process is beneficial for the phase transformation of Bi_2S_3 from amorphous to crystalline. However, no diffraction peaks of Bi_2S_3 can be observed in 5 mol% $Bi_2S_3/Bi_2O_2CO_3$ and 15 mol% $Bi_2S_3/Bi_2O_2CO_3$ composites even they also be treated by hydrothermal process, because of low content of Bi_2S_3 and the high diffraction intensity of $Bi_2O_2CO_3$ which may cover the diffraction peaks of Bi_2S_3 .