Electronic Supplementary Information

Effect of temperature on the performance of ultrafine MnO₂ nanobelt supercapacitors

Wenyao Li,^{ab} Kaibing Xu,^a Lei An,^a Feiran Jiang,^a Xiying Zhou,^b Jianmao Yang,^a

Zhigang Chen,^a Rujia Zou,*^a and Junqing Hu*^a

 ^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
^bSchool of material engineering, Shanghai university of engineering science, Shanghai 201620, China

E-mail: rjzou@dhu.edu.cn; hu.junqing@dhu.edu.cn

Part I: Calculations

The specific capacitance of the electrode was calculated from the C-V curves according to the following equation¹:

$$C = \frac{Q}{\Delta V * m}$$

where C (F g⁻¹) is the specific capacitance, m (g) is the mass of the active materials in the electrodes, Q (C) is an average charge during the charging and discharging processes, and ΔV (V) is the potential window.

The discharge specific capacitance is calculated from the discharge curves using the following formula¹:

$$C = \frac{I * \Delta t}{m * \Delta V}$$

where I (A), Δt (s), m (g), and ΔV (V) are the discharge current, discharge time consumed in the potential range of ΔV , mass of the active materials, and the potential windows, respectively.

1. J. Yan, E. Khoo, A Sumboja, P. S. LEE. Acs Nano, 2010, 4, 4247-4255.

Part II: Supplementary Figures

Fig. S1 Cyclic voltammetry (CV) curves of the MnO₂ nanobelts at different scan rates with (a) 25 °C and (b) 0 °C.

Fig. S2 (a) CV curves comparison of the Ni substrate at different temperatures and MnO_2 nanobelts at 0 °C, at a scan rate of 50 mV s⁻¹. (b) Enlarged CV curves of Ni substrate in (a) at different temperatures.

Fig. S3 Galvanostatic charge-discharge curves of the MnO_2 nanobelts with different current densities at (a) 25 °C and (b) 0 °C.