Electronic Supplementary Information

γ-Fe₂O₃ nanoparticles encaptulated in polypyrrole for solid-state lithium batteries

Jae-Kwang Kim,*^{a,b} Luis Aguilera,^b Fausto Croce,^c Jou-Hyeon Ahn*^d

^a Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 689-798 Ulsan, Korea

^b Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden Fax: +46 31 772 2090; Tel: +46 31 772 33 52; E-mail: jaekwang@chalmers.se

^c Dipartimento di Farmacia, Università "d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy

^d Department of Chemical & Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701, Korea

Figure S1. FT-IR pattern of γ-Fe₂O₃-PPy core-shell.

Figure S2. TGA curve of γ -Fe₂O₃-PPy core-shell.

Figure S3. SEM image of γ-Fe₂O₃-PPy core-shell.

Figure S4. Initial charge-discharge volumetric capacities of Li/GPE/PPy-Fe₂O₃ cells at different current densities (0.1 and 1 C-rate, RT).

Figure S5. Cycle performance and columbic efficiency of $Li/GPE/PPy-Fe_2O_3$ cells at 0.1C-rate (Room temperature).

Figure S6. Cycle performance of nano sized γ -Fe₂O₃ cell at 0.1C-rate (Room temperature).

Figure S7. Initial charge-discharge capacity of Li /PPy-Fe₂O₃ cells with liquid electrolyte (0.1 C-rate, RT).