Electronic Supplementary information (ESI)

Influence of In doping on the thermoelectric properties of

AgSbTe₂ compound with enhanced figure of merit[†]

Rajeshkumar Mohanraman^{1,2,3*}, Raman Sankar⁴, Karunakara Moorthy Boopathi^{1,3,5}, Fang-Cheng Chou^{4,5}, Chih-Wei Chu⁵, Chih-Hao Lee^{1,6}, and Yang-Yuan Chen^{2,7*}

¹ Department of Engineering and System Science, National Tsing Hua University, Taiwan, ROC

² Institute of Physics, Academia Sinica, Taiwan, ROC

³Nano Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taiwan, ROC

⁴ Center for Condensed Matter Sciences, National Taiwan University, Taiwan, ROC

⁵Research Center for Applied Science, Academia Sinica, Taiwan, ROC

⁶National Synchrotron Radiation Research Center, Taiwan, ROC

⁷ Graduate Institute of Applied Physics, National Chengchi University, Taiwan, ROC

X-ray Fluorescence Spectroscopy Analysis

The chemical composition of the as-prepared ingots was determined using wavelength

dispersive X-Ray fluorescence spectroscopy (WD-XRF, Rigaku ZSX primus II).

Table S1.

Nominal Composition	Measured Composition
AgSbTe ₂	$AgSb_{0.9}Te_{2.01}$
$AgSb_{0.97}In_{0.03}Te_{2}$	$AgSb_{0.96}In_{0.037}Te_{2.01}$
$AgSb_{0.95}In_{0.05}Te_{2}$	$AgSb_{0.93}In_{0.06}Te_{2.02}$
$AgSb_{0.93}In_{0.07}Te_{2}$	$AgSb_{0.91}In_{0.08}Te_{2.02}$

Fig. S1 XRF data for AgSbTe₂ sample.

Fig. S2 XRF data for $Ag(Sb_{0.97}In_{0.03})Te_2$ sample.

2013-11- 5 23:17

Fig. S3 XRF data for Ag(Sb_{0.95}In_{0.05})Te₂ sample.

Fig. S4 XRF data for Ag(Sb_{0.95}In_{0.05})Te₂ sample.

Seebeck coefficient (α) vs carrier concentration (n_H)

Assuming a single band dominated by acoustic phonon scattering, we express the

Seebeck coefficient and electrical conductivity as ¹⁻³

$$p = \frac{4\pi (2k_B T m^*)^{\frac{3}{2}}}{h^3} F_{\frac{1}{2}}(\zeta_F)....(2)$$

where Fj(x) is the Fermi integral, p is the hole concentration, ξ_F is the reduced fermi level, m* is the effective mass, h is the Planck constant and k_B is the Boltzmann constant, respectively.

Calculation of Lorentz number (L)

The Lorenz number L is calculated by the formula as follows 4,5

$$L = \left(\frac{k_B}{e}\right)^2 \left(\frac{3F_0(\xi)F_2(\xi) - 4F_1^2(\xi)}{F_0(\xi)}\right)$$
(4)

where the reduced Fermi energy ξ is obtained from the Seebeck value according to Equation 1. By inserting ξ into Equation 4, L values were calculated to be in the range from 1.71 x10⁻⁸ to 1.74 x10⁻⁸ V²K⁻².

References

- T. Caillat, J.-P. Fleurial and A. Borshchevsky, J. Phys. Chem. Solid., 1997, 58, 1119–1125.
- G. S. Nolas, J. W. Sharp and H. J. Goldsmid, in Thermoelectrics: Basic Principles and New Materials Developments, *Springer-Verlag*, Heidelberg, 2001.
- 3. A. Zevalkink, E. S. Toberer, W. G. Zeier, E. Flage-Larsen and G. J. Snyder, *Energy Environ. Sci.*, 2011, **4**, 510–518.
- 4. S. Y. Wang, W. J. Xie, H. Li and X. F. Tang, *Intermetallics.*, 2011, **19**, 1024.
- J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, *Science.*, 2008, **321**, 554.

Thermal stability

Fig. S5. Temperature dependences of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity and (f) thermoelectric figure of merit ZT for samples of $Ag(Sb_{1-x}In_x)Te_2$ (x = 0.03, 0.05, and 0.07). "A" presents the samples annealed at 723 K for 5 days.